Kniga-Online.club
» » » » Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Читать бесплатно Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Так как каждый рабочий сделал одинаковое количество деталей, т. е. ⅓ всей работы, то третий работал ровно 9 ч. Тогда второй работал 9 + 2 = 11 ч. Так как он тоже сделал ⅓ всей работы, то его производительность равна 1/33 всей работы в час. Мы знаем, что первый и второй тратят на ½ всей работы столько же, сколько третий на ⅓, т. е. 9 ч. Второй сделает за это время 33 · 9 = 3/11 всей работы. Следовательно, на долю первого приходится ½ − 3/11 = 5/22. Его производительность 5/22 : 9 = 5/198 в час. Свою треть работы он выполнил за ⅓ : 5/198 = 131/5 (ч), т. е. за 13 ч 12 мин.

Хотя решение выглядит намного красивее, чем первые два, его тоже трудно назвать существенно лучшим. Взгляните внимательно на уравнения второго решения, и вы заметите, что третье решение получено почти «дословным» пересказом этих уравнений.

Таким образом, на пути к решению задачи вас не должно останавливать большое число неизвестных, которые, по вашему мнению, следует ввести.

Однако старайтесь не вводить неизвестные, размерность которых не встречается в условии и не может быть получена как комбинация элементов условия. Введение таких неизвестных может усложнить задачу.

Вот простой пример.

Пример 2. Расстояние между двумя пунктами A и В пароход проходит по течению реки на а ч быстрее, чем то же расстояние в стоячей воде, и на b ч быстрее, чем против течения (b > а > 0). За какое время пароход проходит расстояние от A до В по течению?

Если ввести в рассмотрение неизвестные: v — скорость парохода в стоячей воде, w — скорость течения реки, x — расстояние, то получим систему двух уравнений с тремя неизвестными:

Найти из этой системы величину x/v + w можно, если сделать следующие преобразования:

и обозначить v/x = у, w/x = z. Мы придем к системе относительно у и z, решив которую, вычислим 1/y + z.

Однако такую систему можно было получить сразу, если бы мы не ввели в качестве неизвестного x пройденное пароходом расстояние.

В условии задачи не было чисел, выраженных в километрах, однако расстояние между пунктами являлось существенным связующим звеном. Это означает, что мы должны были принять его за единицу, а скорости v и w выражать в частях расстояния, пройденных за один час. В результате мы пришли бы к системе

которую не пришлось бы преобразовывать.

Разберем еще одну задачу, на примере которой видно, как решаются задачи на движение.

Пример 3. Из пункта С в пункт D выехал товарный поезд. Через 5 ч 5 мин навстречу ему из пункта D выехал пассажирский поезд. Они встретились в каком-то пункте А. После этого пассажирский поезд приехал в пункт С через 4 ч 6 мин, а товарный — в пункт D через 12 ч 55 мин. Сколько времени каждый поезд находился в пути?

Условия задачи можно отразить на схеме (рис. 18.1), где буквой В обозначено положение товарного поезда в момент выхода пассажирского из пункта D.

То обстоятельство, что оба поезда находились в точке А одновременно, мы отразим на схеме с помощью вертикального отрезка, связывающего оба пути. Схема подсказывает нам и выбор неизвестных. На путь от В до А товарный поезд потратил столько же времени, сколько пассажирский на путь от пункта D до А. Если обозначить это время через x, то на схеме не останется «белых пятен».

Пусть v1 — скорость товарного поезда, а v2 — скорость пассажирского поезда. Каждый из отрезков пути: от пункта С до А и от пункта D до А позволяет составить уравнения

1211/12v1 = хv2, (51/12 + x)v1 = 41/10v2.

Можно составить и уравнение для всего пути:

(51/12 + x + 1211/12)v1, = (x + 41/10) v2,

которое является следствием (точнее, суммой) первых двух уравнений. Однако это уравнение проще второго. Поэтому мы будем решать систему

Разделив первое уравнение на второе, получим

откуда x = 5 ч 10 мин (второй корень отрицательный и не имеет физического смысла). Итак, товарный поезд пройдет весь путь за 23 ч 10 мин, а пассажирский — за 9 ч 16 мин.

18.1. Бассейн наполняется четырьмя трубами за 4 ч. Первая, вторая и четвертая заполняют бассейн за 6 ч. Вторая, третья и четвертая — за 5 ч. За сколько времени заполняют бассейн первая и третья трубы?

18.2. У продавца испортились весы (плечи весов оказались неравными). Продавец отпустил покупателю два веса: первый раз на одну чашку весов положил килограммовую гирю, а на вторую — товар, во второй раз поменял гирю и товар местами. Компенсировал ли продавец неточность весов?

18.3. Школьник переклеивает свои марки в новый альбом. Если он наклеит по 20 марок на один лист, то ему не хватит альбома, если по 23 марки, то по крайней мере один лист останется пустым. Если школьнику подарить еще один такой же альбом, на каждом листе которого наклеено по 21 марке, то всего у него станет 500 марок. Сколько листов в альбоме?

18.4. Одному буксиру нужно перевезти за наименьшее время два понтона вниз по реке на l км. Было решено, что один понтон будет отправлен по течению реки самостоятельно, а другой будет некоторое время транспортироваться буксиром, после чего буксир оставит его и вернется за первым и отбуксирует его до конечного пункта. Сколько километров должен транспортироваться второй понтон, чтобы оба пришли к конечному пункту одновременно, и сколько потребуется времени на всю перевозку, если собственная скорость буксира v км/ч, а скорость течения реки u км/ч?

18.5. Некто родился в девятнадцатом веке (до 1900 года). В 1901 году сумма цифр числа, выражающего год его рождения, равнялась сумме цифр числа, выражающего количество прожитых лет. Определите, в каком году родился некто.

18.6. Цена бриллианта пропорциональна квадрату его массы. Бриллиант массой p карат был разбит на две части, после чего его стоимость уменьшилась в k раз. Найдите массы частей, на которые был разбит бриллиант[12].

18.7. Некоторую часть маршрута туристам предстоит совершить вверх по реке. В их распоряжении моторная лодка, способная развивать две скорости с разным расходом горючего. Если скорость течения реки окажется равной u км/ч, то при движении на любой из собственных скоростей будет затрачено одинаковое количество горючего. Если же скорость течения в k раз больше (k > 1), то при движении с собственной скоростью v1 горючее будет израсходовано полностью, а при движении с собственной скоростью v2 останется A кг горючего. Какое количество горючего будет затрачено на весь путь?

18.8. У продавца мороженого есть по нескольку десятков порций мороженого пяти сортов — за 7, 9, 11, 13 и 15 p. Общее число порций равно 180, а общая стоимость — 1840 p. Порций мороженого по 7 и 9 p. вместе столько же, сколько по 11, 13 и 15 p. вместе. Кроме того, известно, что порций по 9 p. вдвое больше, чем по 15 p., и больше, чем по 13 p. Определите число порций каждого сорта.

18.9. Плоты шли из пункта A до устья реки вниз по течению. У устья реки их взял на буксир пароход и через 11,5 суток после выхода плотов из пункта A доставил их по озеру в пункт B. Сколько времени пароход вел плоты от устья реки по озеру до B, если известно, что пароход совершает рейс (без буксировки) от A до B за 40 ч и от B до A за 48 ч, а скорость во время буксировки уменьшается вдвое.

18.10. Три пловца должны проплыть из A в B и обратно. Сначала стартует первый, через 5 с — второй, еще через 5 с — третий. Некоторую точку C, находящуюся между пунктами A и B, все пловцы миновали одновременно (до этого времени ни один из них в B не побывал). Третий пловец, доплыв до B и повернув назад, встречает второго в 9 м от B, а первого — в 15 м от B. Найдите скорость третьего пловца, если расстояние AB равно 55 м.

Перейти на страницу:

Альберт Рывкин читать все книги автора по порядку

Альберт Рывкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Сборник задач по математике с решениями для поступающих в вузы отзывы

Отзывы читателей о книге Сборник задач по математике с решениями для поступающих в вузы, автор: Альберт Рывкин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*