Kniga-Online.club
» » » » Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Читать бесплатно Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Однородные уравнения. Уравнение вида

а0 sink x + а1 sink − 1 x cos x + ...

... + аk1 sin x cosk − 1 x + аk cosk x = 0     (1)

называется однородным, так как все слагаемые его левой части имеют одинаковую степень относительно sin x и cos x.

При α0 ≠ 0 среди решений уравнения (1) не содержится значений x, при которых cos x = 0. В самом деле, полагая cos x = 0, мы получаем из уравнения (1): а0 sink x = 0, откуда sink x = 0, так как а0 ≠ 0 по условию. Но это невозможно, поскольку нет таких значений x, при которых sin x и cos x одновременно обращаются в нуль.

Аналогично при ак ≠ 0 среди решений уравнения (1) не содержится значений x, при которых sin x = 0.

Наметим пути решения уравнения (1). Рассмотрим два случая.

Случай 1. a0 ≠ 0 и аk ≠ 0. В этом случае, разделив уравнение (1) на cosk x, мы получим (поскольку cos x ≠ 0) равносильное ему алгебраическое уравнение

а0ук + а1уk − 1 + ... + аk − 1у + аk = 0       (2)

относительно у = tg x.

Можно также делить уравнение (1) на sink x. Тогда (поскольку sin x ≠ 0) мы получим равносильное уравнению (1) алгебраическое уравнение

а0 + а1z + ... + аk − 1zk − 1 + аkzk = 0      (3)

относительно z = ctg x.

Пример 1. Решить уравнение

sin³ x − 2 sin² x cos x − sin x cos² x + 2 cos³ x = 0.     (4)

Разделив его на cos³ x, получим алгебраическое уравнение

у³ − 2у² − у + 2 = 0,

где у = tg x. Последнее уравнение легко решается путем разложения его левой части на множители, и мы находим корни:

у1 = −1, у2 = 1, у3 = 2.

Теперь остается решить совокупность уравнений

tg x = −1, tg x = 1, tg x = 2.

Мы получим следующие корни уравнения (1):

x = nπ ± π/4 , x = nπ + arctg 2.

Случай 2. a0 = 0, или ak = 0, или а0 = ak = 0. Пусть, например, a0 = ak = 0, а a1 ≠ 0 и ak − 1 ≠ 0. Тогда уравнение (1) примет вид

a1 sink − 1 x cos x + a2 sink − 2 x cos² x + ...

... + ak − 2 sin² x cosk − 2 x + ak − 1 sin x cosk − 1 x = 0.      (5)

В левой части уравнения выносим за скобки все, что возможно (в случае уравнения (5) мы можем вынести за скобки произведение sin x cos x). В результате получим уравнение

sin x cos x (a1 sink − 1 x + a2 sink − 2 x cos x + ...

... + ak − 2 sin x cosk − 2 x + ak − 1 cosk − 1 x) = 0,

распадающееся на совокупность уравнений

sin 2х = 0,

a1 sink − 1 x + a2 sink − 2 x cos x + ...

... + ak − 2 sin x cosk − 2 x + ak − 1 cosk − 1 x = 0,

первое из которых решается просто (см. с. 77), а пути решения второго уравнения показаны в случае 1).

Пример 2. Решить уравнение

sin4 x cos x − 2 sin³ x cos² x − sin² x cos³ x + 2 sin x cos4 x = 0.

Левую часть уравнения разлагаем на множители:

sin x cos x (sin³ x − 2 sin² x cos x − sin x cos² x + 2 cos³ x) = 0. Получаем совокупность уравнений

sin x = 0, cos x = 0,

sin³ x − 2 sin² x cos x − sin x cos² x + 2 cos³ x = 0.

Решения первых двух уравнений даны на с. 77. Третье уравнение подробно рассмотрено в примере 1.

Системы тригонометрических уравнений. Предположим, что, преобразовывая систему тригонометрических уравнений, мы пришли к системе

Если переписать эту систему в виде

то, складывая и вычитая полученные уравнения, придем к выводу, что

Решили ли мы систему? Оказывается, нет. Решить систему — значит, найти все ее решения, а из поля нашего зрения выпало такое очевидное решение как x = 3π/2, у = π/4 (ни при каком целом n из выражения π/4 + 3nπ/2 нельзя получить 3π/4).

В чем же ошибка? Ошибка очень проста: переходя от первоначальной системы к выражениям относительно x + у и xу, мы должны были сохранить их «независимость», которая присутствовала в исходной системе. Вместо этого мы «связали» их введением общего целочисленного переменного n.

Правильным было бы такое решение:

откуда

x = π/4 + (2т + n), у = − π/4 − π/2 (2тn).

Прежде чем приступать к решению задач, ознакомьтесь с введением к главе 9.

Решите уравнения:

13.1. 1 + sin 2x + 2√2 cos 3x sin (x + π/4) = 2 sin x + 2 cos 3x + cos 2x.

13.2. .

13.3. .

13.4. tg 2x tg 7x = 1.

13.5.

13.6. 2 tg 3x − 3 tg 2x = tg² 2x tg 3x.

13.7. sin³ x + cos³ x + 1/√2 sin 2x sin (x + π/4) = cos x + sin 3x.

13.8. 4 tg 4x − 4 tg 3x − tg 2x = tg 2x tg 3x tg 4x.

13.9. Найдите решения уравнения

лежащие в интервале (0, 2π).

13.10. Решите уравнение

sin (x − α) = sin x − sin α.

13.11. Найдите решения уравнения

|cos 2x| = |sin² xа|

(а — действительное число), удовлетворяющие неравенству

0 ≤ x ≤ 2π.

Решите уравнения:

13.12.

13.13. (tg x + sin x)½ + (tg x − sin x)½ = 2 tg½ x cos x.

13.14. ctg 2x + 3 tg 3x = 2 tg x + 2/sin 4x.

13.15. sec x² + cosec x² + sec x² cosec x² = 1.

13.16.

13.17. 4 sin x + 2 cos x = 2 + 3 tg x.

13.18. cos x = cos² 3x/4.

13.19. sin 4x[2 + ctg x + ctg (π/4 − x) = 2√2(1 + sin 2x + cos 2x).

13.20. sin 4x sin x − sin 3x sin 2x = ½ cos 3x + (1 + cos x)½ .

13.21. sin 4x = m tg x, где m > 0.

13.22. sin x/2 (sin x + sin 2x + ... + sin 100x) = ½ sin 101x/2.

13.23. sin² x + sin 2x sin 4x + ... + sin nx sin n²x = 1.

13.24. 4 cos x − 2 cos 2x − cos 4x = 1.

13.25.

13.26. sin³ x + cos³ x = 1.

13.27. cos² 3x + ¼ cos² x = cos 3x cos4 x.

Перейти на страницу:

Альберт Рывкин читать все книги автора по порядку

Альберт Рывкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Сборник задач по математике с решениями для поступающих в вузы отзывы

Отзывы читателей о книге Сборник задач по математике с решениями для поступающих в вузы, автор: Альберт Рывкин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*