Kniga-Online.club
» » » » Василий Ленский - Книга теорем 2

Василий Ленский - Книга теорем 2

Читать бесплатно Василий Ленский - Книга теорем 2. Жанр: Эзотерика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Теорема 10. Каждая лока имеет единицу.

Доказательство.

1. Если, согласно аксиоме 2 введём во взаимодействие все объекты локи, то результатом может быть только объект этой локи. Так для (А)*(В)*….*(Х), согласно аксиоме 3, ставим в соответствие (К), где К — объект этой же группы полярных объектов.

2. Так как объект К содержится в приведённое совокупности, то полученное выражение можно переписать ((А)*(В)*….*(Х))*(К) = (К), где совокупность ((А)*(В)*….*(Х)) уже не содержит объект К.

3. Найдётся такое высказывание, когда совокупности ((А)*(В)*….*(Х)) будет соответствовать некоторый объект Е. Тогда равносильно можно записать (Е)*(К) = К.

4. Высказывание (Е)*(К) = К определяет элемент Е как единицу.

5. Найдётся также некоторая пара взаимодействующих объектов (Х)*(У) для которых в соответствие станет объект Е.

6. Наконец, рассуждение подобное рассуждению пункта 2 можно повторить с любым другим объектом М, то есть ((А)*(В)*….*(Х))*(М) = (М), где ((А)*(В)*….*(Х)) не содержит М.

7. Точно так же совокупности ((А)*(В)*….*(Х)) взаимодействующих объектов можно поставить в соответствие некоторый объект Н. Тогда (Н)*(М) = М.

8. По аксиоме 1 получается, что объект Е п.4 и объект Н п. 7 это один и тот же объект.

9. Такие же рассуждения проводим поочерёдно для каждого элемента всей совокупности (А), (В),….,(Х) полярных объектов.

10. Отсюда получается, что в совокупности объектов есть такой объект Е, когда (А)*(Е) = А, (В)*(Е) = В, …… (Х)*(Е) = Х.

11. Частным случаем при парном взаимодействии объектов найдётся случай, когда (Х)*(У) = Е.

12. Но так как (Х)*(Е) = Х, а так же (У)*(Е) = У, то получим высказывание ((Х)*(Е))* ((У)*(Е)) = Е. Откуда (Е)*(Е) = Е.

Замечание: Эта теорема так же доказывается методом индукции, начиная с локи 1, затем локи 2, локи 3, локи 4, и так далее.

Следствие. Любая лока содержит в себе такой объект, который выполняет условия:

1. (А)*(Е) = А, (В)*(Е) = В, …… (Х)*(Е) = Х.

2. (Х)*(У) = Е.

3. (Е)*(Е) = Е.

4. Элемент со свойствами (0)*(0) = (0) уже получил обозначение 0. Согласно этой символике предыдущее будет записано как:

5. (А)*(0) = А, (В)*(0) = В, …… (Х)*(0) = Х.

6. (Х)*(У) = 0.

7. (0)*(0) = (0).

Вывод: Так как мыслящий ум имеет дело с поляризованными объектами то в построениях ума должен быть объект, содержащий свойства единицы. Именно это мы встречаем в понятиях «абсолют», «бесконечность», «Бог».

Какими бы ни были виды ума, в каждом из них есть единица, то есть некоторый Абсолют. Так как видов Абсолюта (ноль, единица, бесконечность, шунья, и т. п.) много, то дадим объединяющее название «мукти».

Мукти

1. В переводе с санскрита мукти это освобождённый, свободный, вышедший из мира причин и следствий, неизменяемый. Объект со свойствами 0 + 0 + 0 +…+ 0 = 0, (+)*(+)*(+)*….*(+) = +, Е + Е + Е +…+ Е = Е, «бесконечность бесконечности есть бесконечность» и есть мукти. Символически обозначим его 0. Итак, 0*0*0….*0 = 0.

2. Мукти обладает свойством не влиять на объект. Например, (+)*(-) = —. 5 + 0 = 5, «человек во вселенной остаётся человеком». В общем, (0)*(Х) = Х.

3. Мукти является «конечным» в локализованном пространстве. Это своего рода граница такая, что любой объект отражается об эту границу (0)*(Х) = Х. Кроме того, любой объект может приблизиться и стать границей nХ = 0 или ХY = 0. Всё это доказано так, что применена система аксиом.

4. Граница создаёт условия «цикличности». Так, если nX = 0, то (n + 1)Х = Х.

5. Согласно одному из свойств границы — «цикличности» — мукти может составлять, например круг в 360 градусов, так как угол? повторится после 360 +? =?. В этой связи многополярность распространяется на тригонометрию. Рассечение круга на части и есть поляризованные объекты, которые можно вводить во взаимодействие.

6. Мукти имеют и другие локализованные пространства. Поэтому определять наличие локализации можно по законам отношений. Например, содержание «теории множеств» относится всего лишь к локе 2, так как законы отношений у авторов и разработчиков этой теории имели двухполярную базу линейного ума.

Изоморфизм

1. Изоморфизм, одно из основных понятий современной математики, возникшее сначала в пределах алгебры в применении к таким алгебраическим образованиям, как группы, кольца, поля.

2. Понятие изоморфизма относится к системам объектов с заданными в них операциями или отношениями. В качестве простого примера двух изоморфных систем можно рассмотреть плоскостной и объёмной поляризаций локу 3. В плоскостной локе А + В = 0, А + 0 = А, В + 0 = В, 0 + 0 = 0. В локе 3 объёмной поляризации ((А)*(В) = 0, (А)*(0) = А, (В)*(0) = В, (0)*(0) =0.

Внутренние «композиции» этих видов поляризованных пространств наглядно очевидны. Однако применение их к числам или объектам дает разные результаты. Например, +7–5 = +2, но (+7)*(— 5) = — 35.

3. Взаимодействие этих видов поляризованных пространств рождает алгебры. Например, для двухполярной локи (+а — в)*(— с) = — ас + вс, где а, в, с — числа; (+), (—) — полярности, * — знак взаимодействия.

Примичание.

Изоморфизм нельзя игнорировать. Особенно он ярко выражен в словесных высказываниях. Например, (+)*(+) = +, но (+)*(+) = —. Это будет словами «благополучие друзей это хорошо», но «благополучие друзей ведёт их к декрадации»

Однополярное пространство

Плоскостная локальность

В однополярной локе всего один объект. Второго не дано. Обозначим по традиции его 0. Тогда 0 + 0 +….+ 0 = 0, или, как принято,

Такие высказывания есть не только в математике. Например, «бесконечность, сложенная с бесконечностью, есть бесконечность» так как «бесконечность» не содержит ничего. Взятый иной объект тут же отождествляется. Например, в Упанишадах «Ты — это Брахман, Брахман — это ты».

Объёмная локализация

1. Согласно аксиомам 1 в этой локе всего один элемент. Обозначим его 0. Второго не дано.

2. Согласно аксиоме 2 этот объект может взаимодействовать.

3. Так, как иных по полярности (но не по количеству) объектов не дано, то, согласно аксиоме 3, взаимодействовать этот объект может только сам с собой, то есть(0)*(0) = (0). Здесь, как и в дальнейшем, обозначены скобками полярности, а знак *? отношение объёмных полярностей.

Комментарий. В двухполярном мышлении роль этого объекта выполняет (+) так, что (+)*(+) = (+). Одинаковой полярности и свойств будут так же объекты в виде слов «абсолют», «бесконечность», в теории групп «единица» и пр. Например, «бесконечность бесконечности остаётся бесконечностью», «абсолют абсолюта остаётся абсолютом», «единица, умноженная на единицу, равна единице».

Замечание. Это свойство «неизменяемого объекта» появляется в уме тогда, когда необходимо остановить процесс мышления. Например, Бог, Абсолют, бесконечность. К примеру, «бесконечность бесконечности» = «бесконечности».

Действительные числа. Двухполярность

Материал из Многополярность/Математика

Действительные числа

Двухполярные числа исторически названы «действительными числами». Такие числа и соответственно двухполярно формализованные объекты относятся к локе 2. Законы отношений между полярностями будут:

а) (+)*(+) = +,

б) (-)*(-) = +,

в) (+)*(-) = —.

г) (-)*(+) = —.

Здесь * — некоторый вид взаимодействий. Например, можно записать для поляризованного объекта +А — А = 0, где «ноль» (0) выполняет роль единицы такой, что (0)*(0) = 0 (, к примеру 0 + 0 = 0. Полярность «минус» (-) обратная сама себе так, что (-)*(-) = +, где + выполняет роль «единицы» такой, что (+)*(+) = +.

Алгебра действительных чисел хорошо известна из математики, состоявшейся до XXI века.

Однако с появлением понятий о поляризованных объектах мышления следует помнить, что взаимодействие полярностей и поляризованных чисел не следует смешивать. Например, (+5)(-3) = -15. Эдесь взаимодействие полярностей (+)*(-) = — происходит раздельно от самих чисел 5*3 = 15. К сожалению эта путаница происходит у математиков и по сей день.

Бывает, что соотносится число полярностей. Например, +5–3 = +2, то есть число полярностей + уменьшилось до +2. Взаимодействие между полярностями и поляризованными объектами составляет различные виды связей. В конечном итоге, это определяет вид связей.

Двухполярное пространство «шире», чем действительные числа. Более того, законы отношений в таком пространстве доказываются на базе аксиом. Система аксиом взята так, что обычно проходит в современном мышлении как «само собой», то есть математики это не выделяют в предлагаемые ими аксиомы. Аксиомы же математиков ДОКАЗЫВАЮТСЯ.

Двухполярность

Плоскостная поляризация

В этой локе только две полярности А и В. Третьего не дано. Отношение в такой локе будет А + В = А или В. Если А + В = А, то появляется альтернативная лока А + В = В. Никаких привычных переносов через знак равенства здесь нет. Если А + В = А, то В выполняет роль «нулевого» объекта, то есть В? 0.

Перейти на страницу:

Василий Ленский читать все книги автора по порядку

Василий Ленский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Книга теорем 2 отзывы

Отзывы читателей о книге Книга теорем 2, автор: Василий Ленский. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*