Дмитрий Калюжный - Другая история науки. От Аристотеля до Ньютона
Символика Диофанта основана на сокращении слов, и в истории развития алгебраической символики она знаменует переход от словесных выражений алгебраических зависимостей (риторическая алгебра) к сокращениям этих выражений (синкопическая алгебра). Следующей ступенью развития стала чисто символическая алгебра.
Неизвестная величина х в уравнениях Диофанта представлена специальным символом. Переписчики, впрочем, пользовались разными символами, что не изменяет принципиально существа дела, ибо символика не строго единообразная, имеет модификации.
Общая теория диофантовых уравнений первой степени ах+b=1, где а и b – взаимно простые целые числа, была построена в XVII веке французским математиком Баше де Мезириаком (1587–1638). Он также издал в 1621 году сочинения Диофанта на греческом и латинском языках со своими комментариями. Над созданием общей теории диофантовых уравнений 2-й степени трудились многие выдающиеся ученые: П. Ферма, Дж. Валлис, Л. Эйлер, Ж. Лагранж и К. Гаусс. В результате их усилий к началу XIX века было в основном исследовано общее неоднородное уравнение 2-й степени с двумя неизвестными и с целыми коэффициентами.
Имя Диофанта прочно закрепилось и в той части теории чисел, которая изучает приближения действительных чисел рациональными числами; эти приближения так и называются диофантовыми.
Историки науки отмечают, что после закрытия афинской школы в бассейне Средиземноморья в развитии математики как науки наступил длительный перерыв. Но мы помним, что это за афинская школа. Это как раз время заката Византийской империи, и подтверждением тому – тот неоспоримый факт, что в рамках математических теорий «античной древности» возникли и развивались элементы более поздних математических наук: алгебры, анализа бесконечно малых, аналитической геометрии, теоретической механики, аксиоматического метода в математике.
Если сравнивать разные «части» традиционной истории, сразу видно, что умением плавать по морю и строить города ромеи (византийцы) не уступали своим предкам-эллинам; в государственных делах они также были впереди многих государств. И при этом историки науки нам говорят, что ромеи не унаследовали от эллинов любовь к натурфилософии и к точным наукам. Оказывается, для них главным видом интеллектуальной деятельности стало богословие. Монахи и императоры косо смотрели на «языческую премудрость» эллинов. И в завершение ликвидировали последний оплот знания – Академию в Афинах.
В результате возникает необъяснимый феномен: тысячелетняя Византийская империя, не знающая математики. Но загадки нет, если правильно понять, где и когда развивалось то, что мы называем математикой Древней Греции.
О математике Китая
Сведения о математических познаниях китайцев в древности крайне скудны и разрозненны. Самым ранним математическим сочинением, если не считать трактата о чжоу-би (солнечных часах), называют трактат «Математика в девяти книгах». Считается, что это сочинение появилось как своеобразный итог математических достижений Китая к началу нашей эры. Известно даже имя автора, государственного деятеля и ученого Чжан Цаня (152 до н. э.), собравшего и систематизировавшего все известные к его времени математические знания. Вместе с тем признается, что «Математика в девяти книгах» неоднократно подвергалась переработкам и дополнениям: в I веке до н. э. этим занимался Гэн Чоу-чан, в III веке н. э. – Лю Хуэй, в VI – Чжень Луань, и в VII – Ли Чун-фэн. Были и другие.
В результате трактат приобрел вид своеобразной математической энциклопедии с неоднородным содержанием. В VII-Х веках он сделался основным учебником для поступающих на государственную службу и классическим сочинением, на который опирались ученые-математики в своих исследованиях. И эта дата тоже сомнительна, но согласимся с тем, что это памятник Х века.
Книги, составляющие трактат, имели вид отдельных свитков. Они посвящены различным темам, преимущественно практического характера. Различие объясняют тем, что разные книги предназначались для чиновников разных ведомств: землемеров, инженеров, астрономов, сборщиков налогов и т. п. Позднейшие дополнения вносились в книги не по признаку математической общности, а по единству темы. То есть это некоторая солянка сборная из сведений, неизвестно откуда взявшихся.
Изложение – догматическое: формулируются условия задач (всего 246 задач) и даются ответы к ним. После группы однотипных задач приводится алгоритм их решения, состоящий или из общей формулировки правила, или из указаний последовательных операций над конкретными числами. Объяснений, определений, доказательств нет. То есть это справочник, не показывающий, на основании каких работ он составлен.
Книга первая называется «Измерение полей». Единицей измерения служит прямоугольник со сторонами 15 и 16 бу (то есть шагов, приблизительно равных 133 сантиметрам). Площади прямолинейных фигур вычисляются верно. При вычислении площадей круга, сектора и кольца принимается, что число «пи» = 3. Площадь сегмента вычисляется как площадь трапеции, большее основание которой совпадает с основанием сегмента, а меньшее основание и высота – каждое равно высоте сегмента.
Используемая при этом система счисления – десятичная иероглифическая. Числа делятся на классы по 4 разряда в каждом. Особого знака нуля при такой системе записи, очевидно, не требуется. (Нуль действительно появился значительно позже, только в XII веке.) Чтобы придать большую общность постановке основной задачи об измерении площадей, в первой книге введены простые дроби и арифметические действия над ними. Правила действий – обычные; особенностью является только то, что при делении дробей требуется предварительное приведение их к общему знаменателю.
Но вот что настораживает. Употребляемое в первой книге значение «пи» = 3 не соответствует китайской традиции не только Х, но и VI века. Считается, что китайские математики того времени умели и более точно вычислять значения «пи». Например, в I веке до н. э. у Лю Синя дается значение «пи» = 3,1547, во II веке н. э. у Чжан Хэна «пи» определено, как 101/2 (3,162). Чжан Хэн считал, что квадрат длины окружности относится к квадрату периметра описанного квадрата, как 5 к 8. В III веке при вычислении сторон вписанных многоугольников Лю Хуэй нашел, что «пи» = 3,14. Он исходил из предложения, что площадь круга аппроксимируется снизу площадями вписанных многоугольников. Для аппроксимации сверху площади этих многоугольников увеличиваются на сумму прямоугольников, описанных вокруг остаточных сегментов.
Дойдя до 192-угольника, Лю Хуэй получил, что «пи» = 3,14. Некоторые авторы утверждают, что Лю Хуэй продолжил вычисления далее до 3072-угольника и получил значение 3,14159. В V веке Цзу Чун-чжи, по свидетельству Вей Ши (643 год), дал для «пи» значение 3,1415927. Ну, и как все это согласовать с тем, что китайцы даже в Х веке не знали, как вычислять значение «пи»?
Книга вторая – «Соотношение между различными видами зерновых культур», отражает старинную практику взимания налогов зерном, измеряемым в объемных мерах, и расчетов при переработке этого зерна. Математические задачи, возникающие при этом, – это задачи на тройное правило и пропорциональное деление. Ко второй книге была позднее добавлена группа задач на определение стоимости предметов, число которых берется как целое, так и дробное.
Задачи на пропорциональное деление, деление пропорционально обратным значениям чисел, а также простое и сложное тройное правило составляют содержание и следующей, третьей книги – «Деление по ступеням». Правил суммирования арифметических прогрессий здесь еще нет, хотя, по утверждениям тех же историков науки, они известны китайцам с VI века (трактат Чжан Цзю-цзяна).
В четвертой книге вначале речь идет об определении стороны прямоугольника по данным площади и другой стороне. Затем излагаются правила извлечения квадратных и кубических корней, нахождения радиуса круга по его площади. Правила сформулированы специально для счетной доски. Подкоренное число делится на разряды соответственно по 2 или по 3 знака, затем последовательно подбирается очередное число корня и дается правило перестройки палочек на счетной доске.
В книге пятой, «Оценка работ», собраны задачи, связанные с расчетами при строительстве крепостных стен, валов, плотин, башен, ям, рвов и других сооружений. При этом вычисляются как объемы различных тел, так и потребности в рабочей силе, материале, транспортных средствах при различных условиях.
Книга шестая, «Пропорциональное распределение», начинается группой задач о справедливом (пропорциональном) распределении налогов. Математические методы здесь те же, что в книге третьей, где речь шла о распределении доходов между чиновниками различных классов, – пропорциональное деление, простое и сложное тройное правило. Кроме того, в шестую книгу входит серия задач на суммирование отдельных арифметических прогрессий и задач на совместную работу лиц с разной производительностью.