Дмитрий Калюжный - Другая история науки. От Аристотеля до Ньютона
Может показаться, что метод интегральных сумм древних и метод определенного интегрирования имеют много общего. Это происходит оттого, что мы излагаем тему современным языком. Но это не так.
Метод интегральных сумм древних опирается на интуитивное, строго не определенное понятие площади и не использует арифметико-алгебраического аппарата. В нем не введены и не определены необходимые общие понятия: предела, интеграла, бесконечной суммы, и не изучены условия применимости высказываемых теорем. Словом, метод применяется индивидуально для каждой конкретной задачи без выделения и оформления его общетеоретических основ.
Наряду с методом интегральных сумм в математике были разработаны и другие, которые ретроспективно могут быть оценены как дифференциальные методы. Примером может служить метод нахождения касательной к спирали в сочинении Архимеда «О спиралях».
Но широкое использование этот метод получил значительно позже, когда в XVI–XVII веках Паскаль, Барроу и Лейбниц создавали свое исчисление дифференциалов. Поэтому не исключено, что работы Архимеда имеют даже существенно более позднее происхождение, чем мы можем предположить. Ведь они послужили исходным пунктом многих исследований ученых-математиков XVI и XVII веков. Лейбниц, один из основателей математического анализа, по этому поводу писал: «Изучая труды Архимеда, перестаешь удивляться успехам современных математиков».
Вернемся к коническим сечениям. Интерес к ним возрастал по мере увеличения количества решаемых с их помощью задач. Свойства конических сечений стали предметом специального теоретического исследования; им был посвящен ряд сочинений. Однако, подобно тому, как это имело место и с «Началами» Евклида, все эти сочинения были забыты, когда появился труд александрийца Аполлония «Конические сечения».
Первые четыре книги этого труда сохранились на греческом языке, следующие три в арабском переводе, а последняя книга утеряна. Аполлоний первым ввел эллипс, параболу и гиперболу как произвольные плоские сечения произвольных конусов с круговым основанием и детально исследовал их свойства. Метод Аполлония состоял в отнесении кривой к какому-либо ее диаметру и сопряженным с ним хордам и предвосхищал созданный в XVII веке метод координат. «Конические сечения» Аполлония оказали огромное влияние на развитие наук Нового времени – астрономии, механики, оптики. Из положений Аполлония исходили при создании аналитической геометрии Декарт (1596–1650) и Ферма (1601–1655).
Мы видим, что большинство математических теорий до какого-то времени имело своим предметом геометрические объекты. Дело в том, что геометрические величины представлялись имеющими преимущество наибольшей общности в классе математических величин. Хотя, разумеется, нет оснований утверждать, что геометрические формы исчерпывали всю совокупность форм математической деятельности. Греки Византии в практической области применяли большой комплекс арифметико-вычислительных методов. Этот комплекс проникал и в теоретические работы, дополняя теорию арифметико-алгебраическими и теоретико-числовыми элементами.
Но неудобства алфавитной системы счисления и неразработанность символов мешали развитию вычислительных операций. Да и требования практики не были достаточными, чтобы стимулировать операции с весьма большими числами. Вслед за сравнительно ограниченным набором чисел, имеющих названия, довольно быстро наступал порог, после которого число элементов практически представлялось неисчислимым.
Чтобы устранить подобное несовершенство и показать неограниченную продолжаемость натурального ряда чисел, Архимед написал специальное сочинение под названием «Псаммит» (исчисление песка), в котором показывается, что система чисел может быть продолжена сколь угодно далеко и может служить для пересчета любого конечного множества предметов.
Система чисел Архимеда построена по десятичному принципу: единицы (монады), десятки (декады), сотни (гекады), тысячи (хилиады), десятки тысяч (мириады) и т. д. Мириада затем рассматривается как основа счета до числа мириады мириад (108). Числа от 1 до 108 образуют первую октаду (от слова восемь), а числа, в нее входящие, называются первыми. Далее следуют вторая октада, третья и т. д., до октады чисел октадных, замыкающей первый период. Она является исходной единицей второго периода, далее следуют единицы чисел третьего периода, четвертого и так до октады чисел октадных октадного периода.
Получающиеся огромные числа воспринимались как своеобразные бесконечности, шкала роста которых могла быть неограниченно продолжаема. Их с избытком хватало даже для такой задачи, как определение порядка числа песчинок, могущих полностью заполнить всю Вселенную.
Чтобы сделать задачу возможно более определенной, Архимед, исходя из гелиоцентрических воззрений Аристарха Самосского, представляет Вселенную как шар, в центре которого находится Солнце. Радиус шара считается от Солнца до неподвижных звезд. Для дальнейшего уточнения задачи принимается, что диаметр Вселенной во столько же раз больше диаметра Солнечной системы, во сколько раз этот последний больше диаметра Земли. Архимед использует экспериментальные данные астрономов, округляя их в сторону увеличения.
Единица измерения Вселенной – песчинка, принята за 0,0001 зернышка мака, которых требуется 40 штук, чтобы сравняться с шириной человеческого пальца. Подсчеты, произведенные Архимедом, показали, что искомое число песчинок будет не больше чем 1063, или тысячи (103) мириад (104) чисел восьмых (1078) первого периода.
Однако уровень вычислительно-практических приложений многих развитых математических теорий оставался все же сравнительно низким. Это объясняется оторванностью от практики, принудительностью геометрической формы, ограничением совокупности применяемых методов, отсутствием тригонометрии. Требования астрономии к математике с достаточной силой сказались несколько позже.
Официальная история удивляется, что после Евклида, Архимеда и Аполлония наступило время как бы деградации византийской математики. Такой взгляд происходит от неправильного понимания авторства и времени написания этих трудов.
Считается, что после разгрома Александрийского научного центра в VI веке остался последний центр античной науки – Афины, который так же был со временем разгромлен. На самом деле «переезд науки» в Афины – это история Афин под властью крестоносцев, XIII–XV веков. Здесь произошла встреча западноевропейской, арабской и остатков византийской культуры.
В более позднее время постепенно интерес смещается в сторону практических вычислительных методов и задач. Образцом работ подобного направления являются математические работы Герона из Александрии, в особенности его «Метрика». Стиль последней – рецептурный: для определенных классов задач формулируются правила, справедливость которых подкрепляется примерами.
Египетские дроби, записанные для лучшего запоминания в виде «глаза Ра»В «Метрике» содержатся правила для точного и приближенного определения площадей геометрических фигур и объемов тел, правила численного решения квадратных уравнений и извлечения (преимущественно приближенного) квадратных и кубических корней. В частности, в ней приводится известная формула Герона для вычисления площади треугольника по трем его сторонам
S = [р(р-а)(р-b)(р-с)] 1/2,
где а, b, с – стороны, p= (а + b + с)/2.
Наконец, значительную часть содержания «Метрики» составляет описание приемов землемерия и геодезических инструментов.
Значение прикладной вычислительной стороны математики еще более подчеркивается той большой и все возрастающей работой, которую математики вынуждены были вести для составления астрономических таблиц. Среди последних особо значительное место занимают таблицы хорд Птолемея, где данные приведены через каждые 30 от 0 до 180°.
На основе преимущественного роста вычислительной стороны математики, а возможно и под другими дополнительными влияниями в математике зародились элементы алгебры и начальные формы алгебраической символики. На это обстоятельство указывают методы и результаты Диофанта. Из математических сочинений этого александрийского ученого сохранились шесть книг «Арифметики» и отрывки книги о многоугольных числах. Диофант во всех задачах производит только операции с числами, нигде не высказывая общих теорем. Тем не менее для обозначения неизвестного количества в уравнении и для записи функций от него он был вынужден разработать систему символов.
Символика Диофанта основана на сокращении слов, и в истории развития алгебраической символики она знаменует переход от словесных выражений алгебраических зависимостей (риторическая алгебра) к сокращениям этих выражений (синкопическая алгебра). Следующей ступенью развития стала чисто символическая алгебра.