Kniga-Online.club
» » » » Питер Бернстайн - Против богов: Укрощение риска

Питер Бернстайн - Против богов: Укрощение риска

Читать бесплатно Питер Бернстайн - Против богов: Укрощение риска. Жанр: Ценные бумаги и инвестиции издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Подобно многим математикам до и после него, Гаусс уже в раннем детстве проявил гениальные способности, чем в равной степени огорчил отца и обрадовал мать. Его отец был простым рабочим, презирал заумные увлечения своего гениального сына и всячески портил ему жизнь. Мать, напротив, как могла, старалась защитить своего мальчика и всемерно поощряла его увлечение математикой, за что Гаусс до конца дней вспоминал о ней с глубокой благодарностью.

Биографы, как обычно в таких случаях, сообщают всевозможные истории о математических головоломках, которые будущий великий математик решал в том возрасте, когда большинство детей с трудом делят 24 на 12. Он обладал феноменальной памятью и помнил всю логарифмическую таблицу назубок. В восемнадцать лет он сделал удивительное открытие, касающееся свойств семнадцатиугольника; такого в математике не случалось уже 2000 лет со времен древних греков. Его докторская диссертация на тему «Новое доказательство того, что каждая целая рациональная функция одной переменной может быть представлена произведением действительных чисел первой и второй степени» посвящена решению основной теоремы алгебры. Сама теорема была известна и раньше, но он предложил совершенно новое доказательство.

Слава Гаусса была столь велика, что, когда в 1807 году французские войска подошли к Гёттингену, Наполеон приказал поберечь город, в котором живет «величайший математик всех времен»[2]. Со стороны Наполеона это было очень любезно, но слава имеет и оборотную сторону. Когда победители наложили на Германию контрибуцию, они потребовали с Гаусса 2000 франков. Это соответствовало примерно 5000 нынешних долларов — довольно крупная сумма для университетского профессора{1}. Друзья предлагали помощь, Гаусс отказывался; пока шли препирательства, выяснилось, что деньги уже уплачены знаменитым французским математиком Морисом Пьером де Лапласом (1749-1827). Лаплас объяснил свой поступок тем, что считает Гаусса, который был на 29 лет моложе его, «величайшим математиком в мире»[3], т. е. оценил его чуть ниже, чем Наполеон. Позднее анонимный почитатель прислал Гауссу 1000 франков, чтобы помочь ему рассчитаться с Лапласом.

Сам Лаплас был весьма колоритной фигурой, о которой стоит сказать здесь несколько слов; подробнее мы поговорим о нем в главе 12.

В детстве он, как и Гаусс, был математическим вундеркиндом, а впоследствии прославился своей космогонической теорией в астрономии. В течение многих лет его внимание привлекали некоторые разделы теории вероятностей, которые исследовал Гаусс. Но на этом сходство кончается. Жизнь Лапласа протекала на фоне Французской революции, Наполеоновских войн и реставрации Бурбонов. Честолюбивому человеку нужно было обладать большой ловкостью, чтобы в этой кутерьме удержаться на поверхности. Лаплас оказался как раз таким человеком[4].

В 1784 году король сделал его инспектором королевской артиллерии, положив очень приличное жалованье. Однако с установлением республики в Лапласе проснулась «неугасимая ненависть к монархии»[5], а очень скоро после захвата власти Наполеоном он заявил о своей решительной поддержке нового вождя, который дал ему пост министра внутренних дел и титул графа, по-видимому рассчитывая, что сотрудничество всемирно известного ученого укрепит авторитет нового режима. Но уже через шесть недель, уволив Лапласа и посадив на его место своего брата, Наполеон скажет: «Он был хуже самого посредственного чиновника, который во всем видит только хитросплетения. Министерство под его руководством погрязло в трясине бесконечно малой чепухи»[6]. Неплохой урок для ученых, которым неймется стать власть имущими!

Правда, позже Лаплас взял реванш. Вышедшее в 1812 году первое издание своей «Theorie analytique des probabilites» («Аналитической теории вероятностей») он еще посвятил «Великому Наполеону», но из второго издания 1814 года это посвящение вычеркнул и связал перемену политических ветров с темой своего трактата. «Падение империй, стремившихся к господству над миром, — написал он, — с очень высокой степенью вероятности мог предсказать каждый сведущий в вычислениях шансов»[7]. Людовик XVIII после коронации припомнил это замечание, и Лаплас стал маркизом.

***

В отличие от Лапласа Гаусс был очень замкнутым человеком и вел затворнический образ жизни. Он не опубликовал массу своих открытий, и многие из них были заново сделаны другими математиками. В публикациях он уделял больше внимания результатам, не придавая особого значения методам их получения и часто заставляя других математиков тратить массу сил на доказательство его выводов. Эрик Темпл Белл, один из биографов Гаусса, считает, что его необщительность задержала развитие математики по меньшей мере на пятьдесят лет; полдюжины математиков могли бы прославиться, если бы получили результаты, годами, а то и десятилетиями хранившиеся у него архиве[8].

Слава и замкнутость сделали Гаусса неисправимым интеллектуальным снобом. Хотя его основные достижения связаны с теорией чисел, в которой прославился Ферма, он почти не использовал результаты знаменитого тулузского адвоката, а от его великой теоремы, остающейся более трех столетий завораживающей загадкой для математиков всего мира, отмахнулся, назвав ее «частным утверждением, для меня малоинтересным, потому что я легко могу выложить множество подобных утверждений, которые никто не сможет ни доказать, ни опровергнуть»[9].

Это не было пустой похвальбой. В 1801 году, когда ему было 24 года, Гаусс опубликовал «Disquisitiones Arithmeticae» («Арифметическое исследование»), написанное на элегантной латыни яркое и значительное историко-научное исследование по теории чисел. Большая часть книги недоступна нематематикам, но для него самого написанное звучало как музыка[10]. Он находил в теории чисел «магическое очарование» и радовался открытию и доказательству всеобщности таких, например, соотношений:

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

Или, в общем виде, сумма п первых нечетных чисел равна п2. Отсюда сумма первых 100 нечетных чисел от 1 до 199 равна 1002, или 10 000, а сумма нечетных чисел от 1 до 999 равна 250 000.

В 1801 году Гаусс снизошел до демонстрации важных практических приложений своих теоретических выкладок. В 1800 году один итальянский астроном открыл маленькую новую планету, на астрономическом языке астероид, и назвал ее Церера. Год спустя Гаусс вычислил ее орбиту; раньше он уже занимался вычислением лунных таблиц, позволяющих в любой год определить дату праздника Пасхи. В те времена он еще руководствовался желанием завоевать признание, и ему очень хотелось попасть в компанию своих выдающихся предшественников — от Птолемея до Галилея и Ньютона — в изучении небесной механики, хотя он был далек от мысли превзойти астрономические достижения своего современника и благодетеля Лапласа. Впрочем, эта частная задача была привлекательна и сама по себе, в особенности учитывая неполноту данных и незнание скорости вращения Цереры вокруг Солнца.

В результате лихорадочных вычислений Гаусс нашел очень точное решение, дающее возможность предсказывать местонахождение Цереры в любой момент. За время этой работы он настолько поднаторел в небесной механике, что научился вычислять орбиты комет в течение одного-двух часов, в то время как у других ученых эта работа отнимала три-четыре дня.

Гаусс особенно гордился своими астрономическими достижениями, ощущая себя последователем Ньютона, который был его идеалом. Восхищенный открытиями великого англичанина, он впадал в бешенство при упоминании об истории с яблоком, падение которого якобы послужило поводом к открытию закона всемирного тяготения, и так отзывался об этой басне:

«Глупость! Какой-то надоедливый дурак пристал к Ньютону с вопросом, как он открыл закон тяготения. Увидев, что имеет дело с несмышленышем, и стараясь избавиться от надоеды, Ньютон сказал, что ему на нос упало яблоко. Удовлетворенный ответом приставала отошел в полной уверенности, что все понял»[11]

Гаусс был невысокого мнения о человечестве, порицал рост националистических настроений, сопровождаемый прославлением воинских доблестей, и считал завоевательную политику «непостижимой глупостью». Из-за своей мизантропии он и просидел дома большую часть жизни[12].

***

Не питая особого интереса к управлению риском как таковому, он, однако, интересовался теоретическими проблемами, поднятыми в работах по вероятности, теории больших чисел и теории выборки, начатых Якобом Бернулли и продолженных де Муавром и Байесом, и его собственные достижения в этой области легли в основу современных методов контроля риска.

Впервые он обратился к вероятностным проблемам при описании метода определения орбиты на основе множества дискретных наблюдений в книге о движении небесных тел, опубликованной в 1809 году под названием «Theoria Motus» («Теория движения»). Когда в 1810 году «Theoria Motus» попала в руки Лапласу, тот сразу ухватился за нее и занялся выяснением некоторых неясностей, которых Гауссу не удалось избежать.

Перейти на страницу:

Питер Бернстайн читать все книги автора по порядку

Питер Бернстайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Против богов: Укрощение риска отзывы

Отзывы читателей о книге Против богов: Укрощение риска, автор: Питер Бернстайн. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*