Kniga-Online.club
» » » » Питер Бернстайн - Против богов: Укрощение риска

Питер Бернстайн - Против богов: Укрощение риска

Читать бесплатно Питер Бернстайн - Против богов: Укрощение риска. Жанр: Ценные бумаги и инвестиции издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Следующим шагом было определение среднего значения первых десяти испытаний по шесть бросков каждый. В то время как распределение в каждом из этих испытаний, рассматриваемых по отдельности, само по себе мало о чем говорило, среднее от средних оказалось равным 3,48! Теперь среднее уточнилось, но среднее квадратичное отклонение оказалось равным 0,82 — значительно большим, чем хотелось бы{2}.

Иными словами, в семи из десяти испытаний среднее значение оказалось в пределах 3,48 + 0,82 и 3,48 - 0,82, или между 4,30 и 2,66; в остальных трех испытаниях разброс результатов был еще большим.

Тогда я заставил компьютер выполнить 256 испытаний по шесть бросков каждое. Первые 256 испытаний дали близкую к ожидаемому значению величину 3,49 со средним квадратичным отклонением 0,69, то есть две трети результатов оказались в интервале между 4,18 и 2,80. Только в 10% испытаний средние значения были меньше 2,5 или больше 4,5, в то время как больше половины значений попало в интервал от 3,0 до 4,0.

Продолжая насиловать компьютер, я повторил серию из 256 испытаний десять раз. Усреднив результаты, полученные в каждой из десяти выборок, я затем усреднил эти средние и получил 3,499 (я привожу результат с точностью до трех знаков после запятой, чтобы показать степень приближения к 3,5). Впечатляющим оказалось уменьшение величины среднего квадратичного отклонения до 0,044. При этом пять средних оказались ниже 3,5 и пять выше, а семь из десяти выборок по 256 испытаний дали значение в пределах от 3,455 до 3,543. Это неплохая точность.

Как выяснил Якоб Бернулли, количества важны. Это он обратил внимание на то, что среднее от средних значений отдельных выборок удивительным образом снижает дисперсию вокруг основного среднего значения, — утверждение, известное как центральная предельная теорема. Эта теорема была впервые сформулирована Лапласом в 1809 году в работе, которую он закончил и опубликовал перед тем, как в 1810 году ознакомился с «Theoria Motus» Гаусса.

Среднее от средних интересно еще и с другой стороны. Мы начали эксперименты с бросанием шестигранной кости, каждая грань которой имеет равные шансы выпасть. Распределение получалось плоским, не имеющим ничего общего с нормальным. По мере того как компьютер моделировал все большее и большее число бросков, накапливая число выборок, мы получали всё больше и больше информации о свойствах кости.

Очень редко среднее значение в испытании из шести бросков оказывалось близким к шести или к единице; большая часть их оказывалась между двумя и тремя или четырьмя и пятью. Структура результатов в точности повторила расчеты Кардано, выполненные им для игры 250 лет назад, когда он начал нащупывать подходы к вероятностным законам. Множество бросков одной кости дают среднее значение 3,5. Отсюда ясно, что многократное бросание двух костей даст в среднем удвоенную величину, то есть 7,0. Как показал Кардано, значения, отличающиеся от 7 в ту или другую сторону, будут встречаться с одинаково убывающей частотой по мере продвижения от 7 к 2 или к 12.

***

Нормальное распределение является основным элементом большинства систем управления риском. На нем целиком основан страховой бизнес, потому что от пожара в Атланте не загораются дома в Чикаго, а смерть определенного человека в одном месте, как правило, не имеет отношения к смерти другого человека в другом месте и в другое время. Когда страховые компании собирают сведения о миллионах людей обоего пола всех возрастов, значения ожидаемой продолжительности жизни оказываются распределенными по нормальной кривой. В силу этого страховые компании способны с большой степенью надежности оценивать продолжительность жизни разных групп населения. Они могут не только определять ожидаемую среднюю продолжительность жизни, но и диапазоны, в которых она может колебаться из года в год. Уточняя эти оценки на основе дополнительных данных, таких, как истории болезней, число курильщиков, постоянные места проживания, профессиональная деятельность, эти компании повышают точность оценки ожидаемой продолжительности жизни {3}.

Порой нормальное распределение дает гораздо больше важной информации, чем простые оценки представительности выборки. Нормальное распределение менее вероятно, хотя и не исключено, когда наблюдения зависимы друг от друга, то есть когда вероятность события определяется предыдущим событием. Например, если у лучника проблемы со зрением, стрелы будут ложиться слева от яблочка, т. е. центр распределения окажется сдвинутым. В подобных ситуациях распределение относительно среднего значения обычно оказывается асимметричным.

В таких случаях мы можем воспользоваться рассуждением наоборот. Если независимость событий является необходимым условием нормального распределения, можно предположить, что данные, распределение которых представлено колоколообразной кривой, получены на основе независимых наблюдений. Теперь мы можем поставить несколько интересных вопросов.

Насколько точно изменения курса акций на бирже подчинены законам нормального распределения? Некоторые знатоки рынка утверждают, что курс подвержен случайным колебаниям, напоминающим пошатывающегося пьяного, пытающегося ухватиться за фонарный столб. Они полагают, что у курса не больше памяти, чем у рулетки или пары костей, и что каждое наблюдение здесь независимо от предыдущего наблюдения. Сегодняшнее движение цен не зависит от того, что произошло минуту назад, вчера или позавчера.

Лучший способ решения вопроса о том, являются ли изменения курса акций независимыми событиями, заключается в сравнении колебаний курса с нормальным распределением. У нас есть веские основания утверждать, что эти колебания подчиняются нормальному закону, и в этом нет ничего удивительного. В условиях постоянной изменчивости и конкурентной борьбы на нашем рынке капитала, когда каждый инвестор стремится переиграть других, новая информация мгновенно отражается на котировках. Когда выясняется падение прибыли у General Motors или Merck объявляет о выпуске нового чудодейственного лекарства, котировки не стоят на месте в ожидании, пока инвесторы переварят информацию. Ни один инвестор не станет ждать, пока начнут действовать другие. На рынке действуют сворой, и новая информация немедленно изменит котировки акций General Motors или Merck. При этом сама новая информация поступает в случайном порядке. В силу этого изменения котировок непредсказуемы.

Интересные данные в поддержку этой точки зрения были приведены в 1950-х годах профессором Чикагского университета Гарри Робертсом (Roberts)[14]. Роберте с помощью компьютера брал случайные числа из наборов с тем же средним и тем же средним квадратичным отклонением, какие наблюдались у цен на фондовой бирже. Затем он начертил диаграмму последовательной смены этих случайных чисел. Результаты оказались идентичными с результатами аналитиков рынков ценных бумаг, пытающихся предугадать движение котировок. Реальная динамика цен и динамика случайных чисел, выданных компьютером, оказались практически неразличимыми. Возможно, что и на самом деле биржевые котировки не имеют памяти.

На приведенных диаграммах представлены в процентах месячные, квартальные и годовые изменения котировок столь любимого профессиональными инвесторами индекса Standard & Poor's 500. Данные охватывают период с января 1926-го по декабрь 1995 года и содержат результаты 840 месячных наблюдений, 280 квартальных и 70 годовых {4}.

Хотя диаграммы отличаются друг от друга, у них есть две общие черты. Во-первых, как, по слухам, говаривал Д. П. Морган, «рынок переменчив». Действительно, фондовый рынок непредсказуем, на нем может случиться все что угодно. Во-вторых, большая часть наблюдений попадает вправо от нуля: в среднем рынок чаще рос, чем падал.

Нормальность распределения — это жесткая проверка гипотезы случайных колебаний рынка. Но нужна одна важная оговорка. Даже если гипотеза случайных колебаний адекватно описывает ситуацию на фондовом рынке, даже если изменения котировок описываются нормальным распределением, среднее значение изменений всегда отлично от нуля. Тенденция к повышению котировок не должна нас удивлять. Состояние владельцев акций со временем растет, как и сбережения, доходы и прибыли корпораций. Поскольку по большей части котировки не падают, а растут, среднее значение их изменений оказывается положительным.

Сопоставление годовых данных показывает, что все среднегодовые изменения котировок нетипичны. Котировки беспорядочно растут со средней скоростью 7,7% в год{5}. Среднее квадратичное отклонение равно 19,3%, что означает, что в любой год 2/3 времени котировки изменяются в интервале от +27,0% до -12,1%. Хотя максимальный подъем котировок до 46,4% наблюдался на протяжении только 2,5% лет, то есть раз в сорок лет, утешает то, что и максимальное падение котировок до -31,6% оказалось возможным не чаще чем раз в сорок лет.

Перейти на страницу:

Питер Бернстайн читать все книги автора по порядку

Питер Бернстайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Против богов: Укрощение риска отзывы

Отзывы читателей о книге Против богов: Укрощение риска, автор: Питер Бернстайн. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*