Kniga-Online.club
» » » » В начале было ничто. Про время, пространство, скорость и другие константы физики - Питер Эткинс

В начале было ничто. Про время, пространство, скорость и другие константы физики - Питер Эткинс

Читать бесплатно В начале было ничто. Про время, пространство, скорость и другие константы физики - Питер Эткинс. Жанр: Прочая научная литература / Физика год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
было тогда ни смерти, ни бессмертия. Не было признака дня или ночи. Нечто одно дышало, воздуха не колебля, по своему закону, И не было ничего другого, кроме него.

3. Мрак вначале был сокрыт мраком. Все это было неразличимым хаосом.

13

Много (около 2 × 1052) планковских времен тому назад я размышлял о том, как могло иметь место возникновение чего-то из Ничего, в своей книге «Сотворение» (The creation, W. H. Freeman & Co., 1981) и еще раз в книге «Еще раз о Сотворении» (Creation revisited, W. H. Freeman & Co., 1992).

14

Аллюзия на известное высказывание американской писательницы Донны Тартт: «Красота меняет структуру реальности». (Прим. перев.)

15

Количество движения p тела массой m связано со скоростью тела v выражением p = mv.

16

Момент количества движения (угловой момент) J связан с угловой скоростью ω соотношением J = , где I – момент инерции. Момент инерции тела с массой m, обращающегося по орбите радиуса r, равен I = mr 2.

17

Закон преломления Снеллиуса гласит, что когда луч проходит через поверхность раздела двух сред с коэффициентами преломления nr1 и nr2, то угол его падения и угол преломления подчиняются соотношению sin Ѳ1 / sin Ѳ2 = nr2 / nr1.

18

Вот анализ одной ситуации – вдруг вам придется с ней столкнуться. Человек тонет в озере. Если вы бегаете в десять раз быстрее, чем плывете, а утопающий и вы находитесь на одинаковом расстоянии d от береговой линии и на том же расстоянии друг от друга, если отсчитывать его вдоль линии, параллельной берегу, то краткое, хоть и довольно запутанное вычисление (которое лучше выполнить сейчас, чем когда это действительно случится) показывает, что вам надо бежать к точке, которая расположена на береговой линии на 93 % d от ближайшей к вам точки берега, а оттуда уже плыть.

19

Пусть амплитуда волны, приходящей в точку прибытия по одному из путей, равна a0. Амплитуда волны, приходящей по немного отличающемуся пути, описываемому параметром p, мерой изогнутости пути, равна ap. Эти две амплитуды связаны соотношением ap = a0 + p(da/dp) + ½p2(d2a/dp2) +… Если путь достигает минимума, то член da/dp = 0 и две амплитуды отличаются только величиной второго порядка по p; все остальные пути отличаются гораздо сильнее, до первого порядка p. Эксперты уже понимают, что я буду обсуждать не амплитуду, а фазовую длину.

20

Длина волны λ частицы с количеством движения p дается соотношением де Бройля λ = h/p, где h – постоянная Планка (см. главу 8). Это соотношение, предложенное Луи де Бройлем (1892–1987) в 1924 году, как было показано позже, является следствием более общей формулировки квантовой механики.

21

Формальное определение действия S таково:

S = ∫пути L(q, q˙)ds,

где интегрирование ведется вдоль пути с бесконечно малыми шагами ds, q – положение частицы, – ее скорость и L(q, q˙) лагранжиан системы. В некоторых случаях L – разность между кинетической и потенциальной энергиями частицы, как в выражении

для гармонического осциллятора.

22

Версия квантовой механики, основанная на концепции интерферирующих путей, – фейнмановская формулировка теории на основе интеграла по траектории, предложенная в книге P. Ф. Фейнмана и А. Р. Хибса «Квантовая механика и интегралы по траекториям» (McGraw-Hill, 1965) (Русский перевод: Фейнман Р. Квантовая механика и интегралы по траекториям / Р. Фейнман. М.: Книга по Требованию, 2021. 383 с.).

23

Если волна имеет амплитуду a в точке выхода, то ее амплитуда и фаза в удаленной точке aeiS/ћ, где S – действие, связанное с путем ћ = h/2π, а i = √(–1).

24

Второй закон Ньютона выражается дифференциальным уравнением F = dp/dt, где F – сила, а p – импульс. Более сложный пример – уравнение Шредингера для частицы с массой m и энергией E в одномерной области, где потенциальная энергия равна V(x): —(ћ2/2m)(d2ψ/dx2) + V(x)ψ = , где ћ = h/2π и ψ – волновая функция частицы, математическая функция, содержащая всю динамическую информацию о частице.

25

Чтобы найти путь, соответствующий наименьшему действию (как определено в примечании 5), ищите путь, на котором δ ∫пути L(q, q˙)ds = 0, где δ означает изменение пути. Это условие минимизации удовлетворяется при условии, что ∂L/∂q – d(∂L/∂)/dt = 0, которое представляет собой дифференциальное уравнение (уравнение Эйлера – Лагранжа). Если лагранжиан имеет форму L = ½mq˙2 – V(q), уравнение Эйлера – Лагранжа превращается во второй закон Ньютона.

26

Распределение Больцмана подразумевает, что отношение числа молекул N1 и N2 в состояниях с энергиями E1 и E2 при абсолютной температуре T равно N2/N1 = e—(E2–E1)/kT. В примечаниях символ T всегда означает абсолютную температуру.

27

Некоторые педанты знают, что я имею в виду «энергию нулевой точки» для определенных видов движения, энергию, которая из квантовомеханических соображений не может быть равной нулю. Невозможно, например, представить себе маятник, находящийся в состоянии абсолютного покоя.

28

Чтобы получить абсолютную температуру по шкале Кельвина из температуры, измеренной по шкале Цельсия, прибавьте к последней 273,15. Например, 20 °C равны 293 K.

29

Согласно закону скоростей реакции Аррениуса, скорость химической реакции пропорциональна e—Ea/RT, где Ea – энергия активации, а R – газовая постоянная (R = NAk).

30

Ньютоновский закон охлаждения гласит, что разность температур между телом и его окружением ΔT меняется со временем как ΔT(t) = ΔT(0)e—Kt, где K – постоянная, которая зависит от массы и химического состава тела.

31

Закон радиоактивного распада заключается в том, что число активных ядер N меняется со временем как N(t) = N(0)e—Kt, где K

Перейти на страницу:

Питер Эткинс читать все книги автора по порядку

Питер Эткинс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


В начале было ничто. Про время, пространство, скорость и другие константы физики отзывы

Отзывы читателей о книге В начале было ничто. Про время, пространство, скорость и другие константы физики, автор: Питер Эткинс. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*