Kniga-Online.club

Исай Давыдов - Бытие

Читать бесплатно Исай Давыдов - Бытие. Жанр: Прочая научная литература издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Любое трехмерное пространство есть то, в чем может существовать и перемещаться не только точка, не только плоская фигура, но и любое тело, обладающее объемом. Положение любой точки или центра фигуры в трехмерном пространстве в любой момент времени может быть определено тремя независимыми координатами х, у и z. Количество измерений пространства равно количеству всех независимых координат.

Конечное и бесконечное.

Если трехмерное пространство образовано бесконечной плоскостью, движению которой нет конца, то оно представляет собой бесконечное трехмерное пространство. Если же трехмерное пространство ограничено двухмерной замкнутой поверхностью, то оно является конечным трехмерным пространством. Наглядным примером конечного трехмерного пространства служит шар, ограниченный сферической поверхностью. Наиболее интересным примером трехмерного пространства является шарообразное физическое пространство нашей Вселенной, которое с течением времени расширяется от идеального нуля до критических размеров, а затем сжимается от критических размеров до идеального нуля. Время расширения или сжатия физического пространства нашей Вселенной исчисляется десятками миллиардов земных лет.

Ограничение степеней свободы.

Если движение точечного объекта в трехмерном пространстве не ограничивается никакими уравнениями связи, то координаты х, у и z являются независимыми и поэтому трехмерное пространство для такого объекта так и остается трехмерным. Выражаясь точнее, количество степеней свободы объекта в этом случае равно количеству измерений пространства.

Если движение точечного объекта в трехмерном пространстве ограничивается одним уравнением связи, например z = а, то для него трехмерное пространство становится двухмерным, ибо он может двигаться только лишь в плоскости, параллельной осям x и у и отстоящей от них на расстоянии а. Выражаясь точнее, он в трехмерном пространстве имеет две степени свободы.

Если движение точечного объекта в трехмерном пространстве ограничивается двумя уравнениями связи, например у = а и z = b, то для него трехмерное пространство становится одномерным, ибо он может двигаться только лишь по прямой, параллельной оси х. Выражаясь точнее, он в трехмерном пространстве имеет всего одну степень свободы.

Если движение точечного или объемного объекта в трехмерном пространстве ограничивается уравнением связи типа х2 + у2 + z2 = r2, то для него трехмерное пространство становится двухмерным и замкнутым, ибо он может двигаться только лишь по замкнутой сферической поверхности с радиусом г.

Если точечный объект обязан оставаться в состоянии относительного покоя или перемещаться в трехмерном пространстве однозначно так и только лишь так, как предписывают ему законы природы или какие-либо другие внешние силы, то он не обладает никакой свободой вообще, а обладает одной единственной степенью необходимости, ибо след его вынужденного движения представляет собой линию (одномерное пространство).

Количество степеней свободы объекта равно такому количеству измерений пространства, которое он может использовать по своей собственной воле.

Увеличение степеней свободы.

Через любую точку трехмерного пространства можно провести три взаимно-перпендикулярные прямые линии. Через каждую такую линию можно провести сколь угодно большое количество плоскостей. Если объект находится в точке их пересечения, то он для своего движения может выбрать любое из бесконечного множества двухмерных пространств (плоскостей). Это недвусмысленно означает, что количество степеней свободы такого точечного объекта в трехмерном пространстве может быть бесконечно (сколь угодно, неограниченно) большим.

Если трехмерное пространство имеет всего три измерения, то это вовсе не означает, что в нем существует якобы всего лишь три одномерных или двухмерных пространства. В любом ограниченном объеме трехмерного пространства можно провести сколько угодно параллельных плоскостей, ибо толщина каждой из них равна идеальному нулю. Это значит, что в любом трехмерном пространстве можно разместить сколь угодно большое количество двухмерных пространств, как незамкнутых, так и замкнутых. Тем не менее, трехмерное пространство имеет три координаты, а каждое двухмерное пространство – по две координаты.

Поэтому количество степеней свободы точечного объекта в трехмерном пространстве не может быть больше трех, а количество степеней свободы того же объекта во всех двухмерных пространствах, уложенных в трехмерном пространстве, может быть сколь угодно большим. Это недвусмысленно означает, что количество степеней свободы объекта в трехмерном пространстве не равно количеству степеней свободы во всех двухмерных пространствах, уложенных в трехмерном пространстве.

Например, в трехмерном физическом пространстве нашей Вселенной имеется множество планет. Шаровая поверхность каждой из них представляет собой двухмерное замкнутое пространство. Однако, количество степеней свободы объекта в трехмерном физическом пространстве нашей Вселенной не может быть больше трех, а количество степеней свободы интеллектуального объекта на двухмерных поверхностях всех планет, существующих во Вселенной, может быть равно несметному множеству.

Бесконечно большое и бесконечно малое.

В любом ограниченном объеме трехмерного пространства можно разместить сколь угодно большое количество плоскостей, толщина которых равна нулю. Это значит, что трехмерное пространство является бесконечно большим в отношении двухмерного пространства, а двухмерное пространство является бесконечно малым в отношении трехмерного пространства. Но это вовсе не означает, что два независимых трехмерных пространства являются якобы одним шестимерным, пятимерным или даже четырехмерным пространством. Два независимых друг от друга трехмерных пространства вовсе не представляют собой одно шестимерное, пятимерное или даже четырехмерное пространство, ибо точечный объект не может перемещаться из одного такого пространства в другое пространство, как бы «близко» они ни располагались.

Относительность пространства

Трехмерное пространство является относительной категорией, ибо любая конечная сколь угодно малая в нашем представлении протяженность этого пространства представляется бесконечно большой для точечных объектов, существующих в нем, ([23], стр.78).

Проекцией прямой линии на перпендикулярную плоскость является нулевая точка. Поэтому, точечным интеллектуалам, воображаемым жителям прямой линии, любая, сколь угодно большая, перпендикулярная плоскость представляется точкой. Совершенно аналогично все координатные оси идеального пространства проектруются в наше трехмерное физическое пространство в нулевую точку. Поэтому нам, жителям трехмерного физического пространства, любая идеальная категория, включая весь Идеальный Мир, представляется нулем в физическом смысле слова.

Дырки в пространстве.

Чтобы выйти из трехмерного пространства в четвертое измерение четырехмерного пространства, объемный объект должен сократить свой объем до идеального нуля и пробить в своем трехмерном пространстве «точечную дырку». Иначе ему пришлось бы пробивать «плоскую дырку», а это гораздо сложнее, потому что любой объем состоит из бесчисленного множества точек. Согласно закону целесообразности, предпочтение отдается более простым формам движения. Однако, сокращая свой объем до идеального нуля, весомый и зримый объект перестает быть объемным и становится точечным объектом. Поэтому трехмерное пространство является закрытым для материи и открытым для идеи. Идея может проникнуть непосредственно из любой точки трехмерного пространства в четырехмерное пространство и наоборот. Для этого нет никакой необходимости идти в «конец» или на границу трехмерного или четырехмерного пространства. Чтобы совершить такого рода путешествие идеи из трехмерного физического пространства нашей Вселенной в многомерное пространство иного мира, также нет никакой необходимости идти в «конец» физического пространства Вселенной. Это можно сделать из любой его точки.

Согласно основному закону природы, безразмерные точки, представляющие собой элементы физического пространства, не могли бы существовать без своих противоположностей – «точечных дырок», все размеры которых также равны идеальному нулю.

Физическое и идеальное пространство.

Любое трехмерное пространство образовано движением безразмерных точек, все размеры которых равны идеальному нулю.

Трехмерное пространство называется физическим, если оно образовано движением антифотонов и представляет собой бушующий океан отрицательной энергии.

Перейти на страницу:

Исай Давыдов читать все книги автора по порядку

Исай Давыдов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Бытие отзывы

Отзывы читателей о книге Бытие, автор: Исай Давыдов. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*