Kniga-Online.club
» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Читать бесплатно Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

121

В середине 1930-х гг. советская разведка завербовала пятерых студентов старших курсов из Кембриджа; это были Гай Берджесс, Доналд Маклин, Ким Филби, Энтони Блант и Джон Кернкросс. Все члены этой «кембриджской пятерки», как их называли в Советском Союзе, со временем заняли высокое положение в британских политических и разведывательных учреждениях в 1940-х и 1950-х гг. и передавали жизненно важные сведения в СССР в течение Второй мировой войны и холодной войны. Четверо из пяти были из Тринити-колледжа, а пятый — Маклин — из Тринити-холл (отдельного и меньшего колледжа).

122

Литтон Стрэчи, Леонард Вулф, Клайв Белл, Десмонд Маккарти, Сэксон Сидни-Тернер и оба брата Стивен (Тоби и Эдриен) — все были из Тринити. Но Джон Мейнард Кейнс, Роджер Фрай и Э.М. Форстер — из Кингс-колледжа. (Созданная в 1906 г. группа «Блумсбери» объединила молодых людей, интересы которых были связаны с искусством. Центром группы была семья Стивен, где кроме Тоби и Эдриена были и две сестры, Ванесса и Вирджиния. Ванесса вскоре вышла замуж за художника Клайва Белла, а Вирджиния (Вирджиния Вулф, 1882-1941) вышла в 1912 г. за известного журналиста Леонарда Вулфа. В 1910 г. в среде блумсберийцев появился Р. Фрай, игравший важную роль в культурной жизни Англии тех лет. — Примеч. перев.)

123

«Курс анализа» (фр.) (Примеч. перев.)

124

Имеется в виду известный всякому английскому школьнику восторженный сонет поэта-романтика Джона Китса (1795-1821), написанный сразу по прочтении «Одиссеи» в далеком от оригинала, но весьма экспрессивном «ренессансном» переводе Джорджа Чапмена (1559?_1634). Сонет заканчивается строками в переводе С. Сухарева:

Вот так Кортес, догадкой потрясен,Вперял в безмерность океана взор,Когда, преодолев Дарьенский склон,Необозримый встретил он простор.

(Примеч. перев.)

125

Дон — преподаватель, член совета колледжа в Кембридже и Оксфорде. (Примеч. перев.)

126

Сриниваса Рамануджан (1887-1920) — индийский математический гений-самоучка. Он написал письма трем кембриджским математикам с просьбой высказать мнение о его результатах; вник и откликнулся один лишь Харди. Среди многого другого на Харди произвела впечатление следующая найденная Рамануджаном сумма ряда:

1 − 5(1/2)3 + 9(1×3/2×4)3 − 13(1×3×5/2×4×6)3 + … = 2/π.

(Примеч. перев.)

127

«Овал» — легендарное поле для игры в крикет в лондонском Кеннингтоне. Игрок выбит, если мяч попал в калитку, когда хотя бы один из бегущих игроков находился между калитками (игрок тогда считается «bowled out») или если игрок подающей команды поймал мяч после того, как игрок бьющей команды коснулся мяча битой, но до удара мяча о землю (игрок считается «cought out»). Иннинг заканчивается, когда выбиты 10 игроков бьющей команды. (Цифра в 211 пробежек колоссально велика при любой схеме подсчета числа пробежек без выбывания). Тест-матч играется по правилам, делающим встречу самым долгим соревнованием в крикете. На два иннинга обычно отводится 5 дней. (Примеч. перев.)

128

Так всегда говорится. Правда, Александерсон в книге о Джордже Пойа утверждает, что дома у Пойа их много больше.

129

Хотя на корешке моего экземпляра (первого издания) написано просто Primzahlen.

130

«О нулях функции Римана ζ(s)». Упоминаемая чуть ниже статья Литлвуда: «О распределении простых чисел». (Примеч. перев.)

131

Разумеется, предпочтительнее знать точный ответ; но речь идет о том, что часто удается доказать лишь менее строгое ограничение. (Примеч. перев.)

132

В задачах такого типа имеются еще и нижние границы. Нижняя граница — это такое число N, для которого можно доказать, что, каков бы ни был точный ответ, он заведомо больше, чем N. В случае с литлвудовым нарушением, похоже, сделано куда меньше — можно думать, из-за того, что все знают, что точное значение числа, при котором происходит первое нарушение, необычайно велико. Делеглиз и Риват в 1996 г. установили в качестве нижней границы 1018, а позднее довели нижнюю границу до 1020, однако ввиду результата Бейса и Хадсона подобные нижние границы почти ничего не значат.

133

Если имена Бейса и Хадсона кажутся знакомыми, то это из-за того, что они упоминались в главе 8.iv в связи с отклонением Чебышева. На самом деле на очень глубоком уровне, определенно слишком глубоком, чтобы здесь о нем говорить, имеется родство между тенденцией функции Li(x) быть больше, чем π(x), и чебышевскими отклонениями. В теории чисел эти два вопроса обычно рассматриваются совместно. В действительности в работе Литлвуда 1914 г. показано не только, что тенденция функции Li(x) быть больше, чем π(x), нарушается бесконечно много раз, но и что тоже самое верно для чебышевских отклонений. По поводу некоторых недавних. весьма впечатляющих и глубоких результатов по этому вопросу см. статью Майкла Рубинстейна и Питера Сарнака Chebyshev's bias в журнале: Experimental Mathematics. 1994. Vol. 3. P. 173-197.

134

Читателям популярной литературы по математике фон Кох более известен благодаря «кривой Коха». В этом контексте всегда опускают «фон» — ума не приложу, почему. (Кривая Коха — фрактальная кривая, которая нигде не имеет касательной, хотя всюду непрерывна. Три копии кривой Коха, расположенные вдоль сторон правильного треугольника, образуют «снежинку Коха». — Примеч. перев.)

135

Или не зная о книге Бахманна, или же (что более вероятно) просто решив не использовать новое обозначение с Ο большим, фон Кох на самом деле выразил свои результат в более традиционном виде:

|f(x) − Li(x)| < K∙√x∙ln x.

136

В этой области ведется немало исследований. Весьма вероятно, что на самом деле π(x) = Li(x) + Ο(√x), что, возможно, и имел в виду Риман в своем замечании насчет «порядка величины». Однако мы ни в какой мере не близки к доказательству этого факта. Некоторые исследователи, между прочим, предпочитают обозначение Οε(x1/2+ε), чтобы подчеркнуть, что постоянная, подразумеваемая в определении О большого, зависит от ε. Если использовать это обозначение, то логика раздела 15.iii слегка изменяется. Заметим, что квадратный корень из N примерно в два раза короче (я имею в виду, что он содержит примерно в два раза меньше цифр), чем N. Отсюда следует (хотя я и не буду останавливаться ради подробного доказательства), что Li−1(N) дает для N-го простого числа правильный результат примерно до половины длины (примерно первая половина цифр оказывается правильной). Выражение Li−1(N) здесь надо понимать в смысле обратной функции, как в главе 13.ix, следующим образом: «число К, для которого Li(K) = N». Миллиардное простое, например, есть 22 801 763 489, a Li−1(1 000 000 000) равно 22 801 627 415, где мы видим пять, почти шесть правильных цифр из одиннадцати.

137

Мебиуса более всего помнят за ленту (лист) Мебиуса, показанную на рисунке 15.4, которую сам он придумал в 1858 г. (Ранее она была описана другим математиком, Йоханом Листингом, также в 1858 г. Листинг опубликовал свое открытие, а Мебиус — нет, так что, согласно академическим правилам, ее следовало бы называть «лентой Листинга». Мир устроен несправедливо.) Чтобы сделать ленту Мебиуса, надо взять полоску бумаги за концы (один конец в правой руке, другой — в левой), перекрутить один из них на 180 градусов и склеить их друг с другом. Получится односторонняя поверхность — муравей может переползти из любой точки на полосе в любую другую точку, не перелезая при этом через край.

138

Если вам кажется, что выбор буквы, указывающей на свое собственное имя, было проявлением тщеславия со стороны Мебиуса, то сообщу вам, что сам Мебиус при первом описании своей функции в 1832 г. не использовал буквы μ; виновник появления μ — Франц Мертенс, который ввел ее в 1874 г., причем в честь Мебиуса, к тому времени уже скончавшегося, а не в свою.

Перейти на страницу:

Джон Дербишир читать все книги автора по порядку

Джон Дербишир - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. отзывы

Отзывы читателей о книге Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике., автор: Джон Дербишир. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*