Kniga-Online.club
» » » » Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Читать бесплатно Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

73

Двое из шести детей Гаусса эмигрировали в Соединенные Штаты, где приняли участие в заселении штата Миссури.

74

Горы Гарц (Харц) — самые высокие горы Северной Германии, располагаются на территории земель Нижняя Саксония, Саксония-Анхальт и Тюрингия. Наивысшая точка — Брокен, 1142 м. — считается самым известным местом встреч ведьм в Европе. Эта гора описана также в «Фаусте» Гете. (Примеч. перев.)

75

«Неслабая формула» на самом деле не столь уж и страшна. Если, конечно, вы не забыли математику из старших классов. За исключением дзета-функции, там нет ничего такого, чего бы не проходили, по крайней мере частично, в школе. Синус и факториал — это, как говорят математики, «элементарные» функции, так что выписанная формула «элементарно» связывает значение дзета-функции при аргументе 1 − s со значением при аргументе s. Такая формула, кстати сказать, называется «функциональным уравнением».

76

К слову, этот факт был впервые доказан Бернхардом Риманом.

77

Чтобы суммировать ряд к другому значению, необходимо переставить бесконечное число слагаемых; в отношении конечных сумм, разумеется, верен закон перестановочности для сложения. (Примеч. перев.)

78

Эдвардс Х.М. Дзета-функция Римана. 1974. Перепечатано изд-вом Dover в 2001 г.

79

Несмотря на некоторое число печальных примеров, — как, скажем, Риман — математики высокого уровня демонстрируют потрясающее здоровье. При написании этой книги меня поразило число математиков, доживших до значительного возрасту и продолжавших активно трудиться практически до конца своих дней. «Математика — очень тяжелая работа, и ее корифеи имеют тенденцию быть выше среднего в том, что касается энергии и здоровья. Ниже определенного предела человек сдает, но выше этого предела напряженная умственная работа способствует сохранению энергии и здоровья (а также — как можно судить из многочисленных исторических свидетельств на протяжении многих лет — способствует долголетию)» (Литлвуд Дж. И. Искусство работы математика. 1967). Литлвуд, о котором еще много будет сказано в главе 14, стал иллюстрацией своего собственного тезиса, дожив до 92 лет. В 1972 г. его коллега X.А. Холлонд сделал о нем следующую запись: «Ему идет 87-й год, а он продолжает работать по нескольку часов подряд, занимаясь написанием статей для публикации и помогая математикам, которые прислали ему свои задачи». (Цит. по Беркил Дж. Ч. в кн.: Математика: Люди, проблемы, результаты. Brigham Young University. 1984.)

80

О распределении нулей функции ζ(s) и их арифметических следствиях. (Примеч. перев.)

81

Имеется в виду роман-притча Г. Мелвилла «Моби Дик, или Белый Кит» (1851). (Примеч. перев.)

82

«Прекрасная эпоха» — название, закрепившееся за периодом 1890–1914 гг., характеризовавшимся стабильностью жизни, расцветом культуры и техники. Впрочем надо заметить, что название это появилось после Первой мировой войны и носило отчетливо ностальгический характер. (Примеч. перев.)

83

Эта музыка — наряду с музыкой Баха, Бетховена, Чайковского, Мусоргского, Понкьелли и Стравинского — была использована в классической полнометражной анимационной ленте «Фантазия» (1940). (Примеч. перев.)

84

Нет, не могу сдержаться. «Если f — аналитическая функция в кольце 0 < r1 < |z| < r2 < ∞, r — некоторое число строго между r1 и r2, а M1, M2 и M — максимумы функции f на трех окружностях, соответствующих r1, r2 и r, то выполняется неравенство:

Mln(r2/r1) ≤ M1ln(r2/r)M2ln(r/r1)».

85

Годы жизни Стилтьеса — 1856-1894.

86

«Полученные доклады». Этот термин столь распространен в научной библиографии, что часто сокращается до C.R.

87

В 1627 г. Декарт присутствовал при осаде Ла-Рошели, а еще до этого, во время Тридцатилетней войны, служил наемником, отчасти из желания «посмотреть мир». Одной же из вероятных причин смерти Декарта в 49-летнем возрасте (в 1650 г. в Стокгольме называется необходимость раннего подъема по утрам для занятий со шведкой королевой Кристиной. (Примеч. перев.)

88

Он не вступил в коммунистическую партию, но его дочь Жаклин вступила.

89

Русский перевод этой книги вышел в Москве в 1970 г. в издательстве «Советское радио». (Примеч. перев.)

90

Хотя слава доказательства ТРПЧ принадлежит в равной мере Адамару и де ля Валле Пуссену, я написал массу всего о первом и почти ничего о втором. Отчасти это вызвано тем, что я нахожу Адамара интересным и симпатичным человеком. Отчасти же тем, что о де ля Валле Пуссене имеется гораздо меньше материалов. Будучи прекрасным математиком, он, по-видимому, не проявлял себя ни в каких других сферах. Я спросил об этом у Атле Сельберга, единственного из тех математиков, с кем я разговаривал, который мог знать обоих. Адамар? «А, да. Я встречал его на Кембриджском конгрессе» (т.е. в 1950 г). Де ля Валле Пуссен? «Нет. Я никогда его не встречал, и не знаю никого, кто бы встречал. Не думаю, что он много путешествовал».

91

В 2006 г. конгресс прошел в Мадриде (собрав более 4500 участников), а конгресс 2010 г. планируется провести в Хайдерабаде (Индия). (Примеч. перев.)

92

Буквально — «девять зулусских цариц правили Китаем», фраза в русском переводе столь же бессмысленная, как и в оригинале, но, кроме того, еще и бесполезная. Вообще-то одной этой фразой дело в любом случае не ограничивается: в математике встречаются еще и ажурные буквы H и O. В рамках аналогии, приводимой автором в следующем абзаце, это, если угодно, огромные и толстые матрешки, которые по некоторым признакам уже не совсем матрешки. (Примеч. перев.)

93

В наше время фазу чаще называют «аргументом» и обозначают Arg(z). Я использовал старое название (в оригинале «amplitude» и Am(z) — пер.), отчасти из уважения к Г.Х. Харди (см. главу 14.ii), а отчасти чтобы избежать путаницы со словом «аргумент» для обозначения «числа, к которому применяется функция». (В переводе, следуя желанию автора избежать подобной путаницы, использован термин «фаза», который несет в себе некоторые «физические» коннотации, но в целом достаточно ясно указывает на то, что он призван обозначать. — Примеч. перев.)

94

Гильберт родился в 1862 г. в Велау, ныне поселок Знаменск Калининградской области. (Примеч. перев.)

95

Успех, приносящий уважение; скандальный успех (франц). (Примеч. перев.)

96

В мои намерения вовсе не входит выставлять Кронеккера никчемным чудаком. Тезис, который он защищал, хоть я и не согласен с ним, представляет собой весьма тонкий и глубокий математический вопрос. По поводу вдохновенной защиты Кронеккера см. статью Хэролда Эдвардса в: Mathematica Intelligencer. Vol. 9. № 1. Кронеккер, по словам профессора Эдвардса, был человек «вполне разумный и рассудительный, но едкий».

97

Сэмюэл Джонсон (доктор Джонсон, или просто Хан) — английский литератор и филолог XVIII в., прославившийся работоспособностью, широтой интересов и любовью к лондонским кофейням, заменявшим ему рабочий кабинет. (Примеч. перев.)

98

См. однако, высказывание, приписываемое Ландау в главе 14.iv. (Примеч. перев.)

99

Рид К. Гильберт. С приложением обзора Германа Вейля математических трудов Гильберта. М.: Наука, 1977. (Примеч. перев.)

100

Геттисбергская речь Авраама Линкольна 19 ноября 1863 г. на месте одного из сражений войны между Севером и Югом — одна из вершин политического красноречия. Эта короткая (из десяти предложений) речь оказала огромное воздействие на американцев и считается одной из наиболее известных и часто цитируемых речей на английском языке. (Примеч. перев.)

Перейти на страницу:

Джон Дербишир читать все книги автора по порядку

Джон Дербишир - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. отзывы

Отзывы читателей о книге Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике., автор: Джон Дербишир. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*