Kniga-Online.club
» » » » Иэн Стюарт - Истина и красота. Всемирная история симметрии.

Иэн Стюарт - Истина и красота. Всемирная история симметрии.

Читать бесплатно Иэн Стюарт - Истина и красота. Всемирная история симметрии.. Жанр: Математика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Следствия из аксиом Эвклида — длинная, тщательно отобранная цепочка логических построений — простираются необычайно далеко. Например, он доказывает — применяя логику, которая в его дни считалась безукоризненной, — что, коль скоро вы принимаете его аксиомы, вы неизбежно должны заключить следующее.

• Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов двух других его сторон.

• Существует бесконечно много простых чисел.

• Существуют иррациональные числа — такие, которые не выражаются в виде дроби. Примером является квадратный корень из двух.

• Имеется ровно пять правильных тел: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.

• Любой угол можно точно разделить на две равные части, используя только циркуль и линейку.

• Можно построить правильные многоугольники с 3, 4, 5, 6 , 8, 10 и 12 сторонами, используя только циркуль и линейку.

Я выразил эти «теоремы», как называются любые обладающие доказательством математические утверждения, на современном языке. Язык Эвклида отличался довольно сильно: Эвклид не работал непосредственно с числами. Все, что мы интерпретируем как свойства чисел, формулируется у него в терминах длин, площадей и объемов.

Содержание «Начал» разбивается на две основные категории. Имеются теоремы, говорящие нам, что некое утверждение истинно. И имеются конструкции, говорящие нам, как что-либо можно сделать.

Типичная и заслуженно знаменитая теорема — это Предложение 47 Книги I «Начал», широко известное как теорема Пифагора. Она гласит, что самая длинная сторона в прямоугольном треугольнике находится в определенной связи с двумя другими. Но без дополнительных усилий или интерпретации она не дает метода для достижения какой-либо цели.

Теорема Пифагора.

Конструкция, существенная для нашего рассказа, содержится в Предложении 9 из Книги I, где Эвклид решает задачу «бисекции» (деления пополам) углов. Эвклидов метод деления угла пополам прост, но остроумен, с учетом ограниченных возможностей, доступных на той ранней стадии развития. Если задан угол (1), образованный двумя отрезками прямых, поместите циркуль в точку пересечения этих отрезков (2) и проведите окружность, которая пересечет отрезки в двух точках, по одной на каждом (черные точки). Теперь проведите (3) две окружности того же радиуса с центрами в полученных точках. Они пересекутся в двух точках (отмечена только одна из них), после чего через них проводится (4) искомая биссектриса (показана точками).

Как разделить угол пополам циркулем и линейкой.

Повторяя это построение, можно разделить угол на четыре равные части, на восемь, на шестнадцать — число частей удваивается на каждом шаге, так что мы получаем степени двойки: 2, 4, 8, 16, 32, 64 и так далее.

Как я уже говорил, в «Началах» основной аспект, имеющий отношение к нашему рассказу, состоит не в том, что там содержится, а в том, чего там нет. Эвклид не дал никаких методов для решения следующих задач.

• Деление угла точно на три равные части (трисекция угла).

• Построение правильного многоугольника с 7 сторонами.

• Построение отрезка, длина которого равна длине окружности заданного радиуса (выпрямление окружности).

• Построение квадрата, площадь которого равна площади круга заданного радиуса (квадратура круга).

• Построение куба, объем которого ровно вдвое больше объема заданного куба (удвоение куба).

Иногда говорится, что сами греки воспринимали эти упущения как недостатки в монументальном труде Эвклида и посвятили много сил их исправлению. Историки математики нашли очень мало свидетельств в поддержку этих утверждений. В действительности греки были в состоянии решить все перечисленные выше задачи, но для этого им приходилось использовать методы, находившиеся за пределами установленных Эвклидом рамок. Все эвклидовы построения выполнялись циркулем и линейкой без делений. Греческие геометры могли бы выполнить трисекцию угла, используя специальные кривые, называемые коническими сечениями; они могли бы квадрировать круг, используя другую специальную кривую, называемую квадратрисой. С другой стороны, они, кажется, не понимали, что если можно выполнить трисекцию угла, то можно построить и правильный семиугольник (да, я имею в виду именно семиугольник; девятиугольник построить несложно, а вот для семиугольника потребуется очень хитрое построение). На самом деле они, похоже, вообще не изучали следствий, вытекающих из трисекции угла. Душа их, по-видимому, не лежала к таким исследованиям.

Позднейшие математики воспринимали то, что было опущено у Эвклида, в ином свете. Вместо поисков новых средств для решения этих задач они озаботились вопросом о том, чего можно достичь, используя ограниченные средства, выбранные Эвклидом, — циркуль и линейку (причем без всякого жульничества с нанесенными на нее делениями: греки знали, что «прием вставки»[7] со скользящей линейкой с делениями позволяет эффективно и точно разделить угол на три части; один такой метод был изобретен Архимедом). Нахождение того, что можно сделать, а чего нельзя, а также доказательство этого заняли долгое время. К концу 1800-х годов стало окончательно ясно, что ни одну из приведенных выше задач нельзя решить, используя только циркуль и линейку.

Трисекция угла Архимедом.

Это был замечательный шаг вперед. Вместо того чтобы доказывать, что какой-то конкретный метод позволяет решить конкретную задачу, математики научились доказывать противоположное, причем в очень сильной форме: никакой метод из такого-то класса не способен решить такую-то задачу. Математики начали постигать внутренние ограничения, присущие их предмету. Здесь особенно зачаровывает дополнительный штрих, состоящий в том, что, даже утверждая наличие подобных ограничений, математики смогли доказать, что это в самом деле настоящие ограничения.

В надежде избежать неправильного понимания я хочу отметить ряд важных аспектов задачи о трисекции угла.

Требуется точное построение. Это очень жесткое условие в рамках идеализированной греческой формулировки геометрии, где линии считаются бесконечно тонкими, а точки — имеющими нулевой размер. Требуется разделить угол на три совершенно равные части. Равные не с точностью во столько-то десятичных знаков, будь то сотня или миллиард, — построение должно иметь бесконечную точность. В том же духе, правда, нам разрешается с бесконечной точностью помещать циркуль в любую точку, которая нам задана или которая возникла в процессе построения; раствор циркуля можно с бесконечной точностью задавать равным расстоянию между любыми двумя такими точками; кроме того, можно проводить прямую линию, проходящую точно через любые две такие точки.

В нашей менее совершенной реальности все не так. Так бесполезна ли геометрия Эвклида в нашем реальном мире? Нет. Например, если вы действуете так, как предписывает Эвклид в Предложении 9, имея реальный циркуль и реальный лист бумаги, то вы получите очень неплохую биссектрису. До появления компьютерной графики чертежники именно так и делили на чертежах угол на две части. Идеализация — не недостаток; она представляет собой основную причину, по которой математика вообще работает. В рамках идеализированной модели можно рассуждать логически, потому что точно известны свойства всех участвующих в ней объектов. Реальный мир с его элементами хаоса не таков.

Однако и идеализация имеет свои пределы, из-за которых модель может иногда стать непригодной. Бесконечно тонкие линии, например, не очень хороши в качестве разметки на дорогах[8]. Модель следует приспособить к соответствующему контексту. Модель Эвклида была приспособлена таким образом, чтобы облегчить вывод логических зависимостей между геометрическими утверждениями. В качестве бонуса она может быть полезна для понимания реального мира, хотя это ни в коей мере не занимало центрального места в рассуждениях Эвклида.

Следующее замечание связано с предыдущим, но идет в несколько ином направлении. Не составляет труда найти построения для приближенной трисекции углов. Если вам требуется точность в один процент или в одну тысячную процента, этого можно добиться. Когда ошибка составляет тысячную долю толщины линии, которую проводит ваш карандаш, она и в самом деле не слишком важна для технических чертежей. Математическая же задача ставится об идеальной трисекции. Можно ли произвольный угол точно разбить на три части? И ответ здесь — нет.

Иногда говорят, что «нельзя доказать отрицание». Математики знают, что такое утверждение — чушь. Более того, отрицание может обладать собственным очарованием, в особенности когда для доказательства невозможности чего-либо требуются новые методы. Такие методы часто оказываются более мощными и более интересными, чем положительные решения. Когда кто-то изобрел новый мощный метод, позволяющий характеризовать вещи, которые можно построить циркулем и линейкой, а также отделил их от тех, построить которые таким образом нельзя, возникает совершенно новый способ мышления. А за ним приходят новые идеи, новые задачи, новые решения — и новые математические теории и инструменты.

Перейти на страницу:

Иэн Стюарт читать все книги автора по порядку

Иэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Истина и красота. Всемирная история симметрии. отзывы

Отзывы читателей о книге Истина и красота. Всемирная история симметрии., автор: Иэн Стюарт. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*