Иэн Стюарт - Истина и красота. Всемирная история симметрии.
Иногда говорят, что «нельзя доказать отрицание». Математики знают, что такое утверждение — чушь. Более того, отрицание может обладать собственным очарованием, в особенности когда для доказательства невозможности чего-либо требуются новые методы. Такие методы часто оказываются более мощными и более интересными, чем положительные решения. Когда кто-то изобрел новый мощный метод, позволяющий характеризовать вещи, которые можно построить циркулем и линейкой, а также отделил их от тех, построить которые таким образом нельзя, возникает совершенно новый способ мышления. А за ним приходят новые идеи, новые задачи, новые решения — и новые математические теории и инструменты.
Нельзя использовать инструменты, которые нельзя построить. Вам не удастся позвонить другу по мобильному телефону, если мобильных телефонов не существует. Или съесть суфле из шпината, если никто не изобрел сельского хозяйства или не придумал, как пользоваться огнем. Так что создание инструментов может оказаться не менее важным, чем решение задач.
Возможность деления углов на равные части тесно связана кое с чем более милым — с построением правильных многоугольников.
Многоугольник — это замкнутая фигура, образованная отрезками прямых линий. Треугольники, квадраты, прямоугольники, ромбы типа такого — все они многоугольники. Окружность не есть многоугольник, потому что ее «сторона» представляет собой кривую, а не некоторое число отрезков. Многоугольник называется правильным, если все его стороны имеют одну и ту же длину, а каждая пара соседних сторон пересекается под одним и тем же углом. На рисунке приведены правильные многоугольники с числом сторон 3, 4, 5, 6, 7 и 8.
Правильные многоугольники.
Иногда пишут: 3-угольник, 4-угольник, 5-угольник, 6-угольник, 7-угольник и 8-угольник, — что выглядит не слишком красиво, но когда дело доходит до необходимости говорить о многоугольнике с 17 сторонами, такая запись, как «17-угольник», оказывается достаточно практичной. А что касается 65537-угольника (да, такие бывают!) — полагаю, вы уловили суть.
Эвклид и его предшественники должны были много размышлять над вопросом, какие из правильных многоугольников можно построить, поскольку Эвклид дает способы построения для многих из них. Вопрос этот оказался очень увлекательным и вовсе не простым. Греки знали, как построить правильные многоугольники со следующим числом сторон:
3, 4, 5, 6, 8, 10, 12, 15, 16, 20.
Нам теперь известно, что их нельзя построить, когда число сторон равно
7, 9, 11, 13, 14, 18, 19.
Как можно заметить, неучтенным в указанном интервале осталось только одно число — 17. История о 17-угольнике будет рассказана отдельно; она важна по причинам, выходящим за рамки чисто математических.
Когда речь идет о геометрии, нет никакой альтернативы рисованию на листе бумаги с использованием реального циркуля и настоящей линейки. Работа с ними позволяет ощутить единство всего этого предмета. Я хочу показать вам мою любимую конструкцию — построение правильного шестиугольника. Я почерпнул ее из книги, которую в конце 1950-х годов дал мне мой дядя, — книга называлась Man Must Measure («Человек должен измерять») и была совершенно замечательной.
Фиксируем раз и навсегда раствор циркуля, так что все наши окружности будут одного же размера. (1) Начертим окружность. (2) Выберем точку на ней и проведем окружность с центром в этой точке. Она пересекает исходную окружность в двух новых точках, (3) Проведем окружности с центрами в этих точках и получим два новых пересечения. (4) Проведем окружности с центрами в этих точках; обе они пройдут через одну и ту же новую точку пересечения. Полученные шесть точек можно теперь соединить в правильный шестиугольник. Из эстетических соображений приятно (но математически не обязательно) дополнить картину. (5) Проведем окружность с центром в шестой точке. Тогда шесть окружностей пересекутся в центре исходной, образуя нечто вроде цветка.
Как построить правильный шестиугольник.
Эвклид использовал очень похожий метод — более простой, хотя и не такой симпатичный — и доказал, что он работает. Его можно найти в Предложении 15 Книги IV.
Глава 3
Персидский поэт
Встань! Бросил камень в чашу тьмы Восток!
В путь, караваны звезд! Мрак изнемог…
И ловит башню гордую султана
Охотник-Солнце в огненный силок.
Для большинства из нас имя Омара Хайяма неразрывно связано с его исполненными иронии четверостишиями «Рубай», а конкретнее — с их изящным переводом на английский, сделанным Эдвардом Фитцджеральдом. Однако историки математики полагают, что у Хайяма есть еще больше оснований для притязаний на славу. Он занимает видное место среди персидских и арабских математиков, подобравших брошенный греками факел и продолживших развитие новой математики после того, как знание в Западной Европе погрузилось в темные века, а ученые доказательству теорем предпочли теологические споры.
К числу великих достижений Хайяма относится решение кубических уравнений, выполненное в рамках почтенных методов греческой геометрии. Его методы по необходимости вышли за рамки циркуля и линейки, которыми молчаливо ограничивалась геометрия Эвклида, поскольку эти средства просто не пригодны для решения данной задачи — обстоятельство, о котором греки сильно подозревали, но не могли доказать из-за отсутствия необходимого подхода, лежащего в сфере алгебры, а не геометрии. Впрочем, методы Хайяма выходят за рамки циркуля и линейки не слишком сильно. Он использовал специальные кривые, называемые «коническими сечениями» — по той причине, что их можно построить, пересекая конус плоскостью.
Народная мудрость, касающаяся правил написания научно-популярной литературы, гласит: каждая формула уменьшает продажи книги вдвое. Если так, то это очень плохая новость, потому что понять основные мотивы в данной книге никак не получится, не взглянув на несколько уравнений. Следующая глава, например, посвящена открытиям, сделанным математиками эпохи Возрождения, — открытиям формул для решения любого кубического уравнения или уравнения четвертой степени. Я могу обойтись без формулы для решения уравнений четвертой степени, но вот взглянуть на формулу для кубического уравнения нам так или иначе придется. В противном случае мы вынуждены будем ограничиться словами типа «умножаем некоторые числа на некоторые другие числа и к этому прибавляем некоторые третьи числа, а потом извлекаем квадратный корень, затем прибавляем другое число и из того, что получилось, извлекаем кубический корень; далее делаем то же самое снова, но со слегка другими числами; в конце концов складываем два результата. А, забыл! — иногда еще надо будет делить».
Некоторые авторы бросили вызов этой народной мудрости и даже написали книги про уравнения. Видимо, они следуют известному совету из области шоу-бизнеса: «Если у вас деревянная нога, помашите ею». Так вот, в некотором смысле эта книга — об уравнениях; но подобно тому, как можно написать книгу о горах, не требуя при этом, чтобы читатели взбирались на гору, также можно написать книгу об уравнениях, не требуя, чтобы читатели их решали. Тем не менее читатели книги о горах вряд ли поймут ее, если никогда не видели гор, так что для нас и в самом деле будет полезным взглянуть на специально отобранные уравнения.
Основное соглашение, которое я предлагаю заключить, тенденциозно перекошено в пользу читателя: ключевым словом будет «показать». Я хочу, чтобы вы посмотрели на уравнения. Ничего делать с ними не требуется. По мере необходимости я буду разбирать уравнения на части и объяснять, какие их свойства существенны для нашего рассказа. Я никогда не буду просить вас решить уравнение или произвести с ним какие-либо вычисления. И я всерьез постараюсь избегать их появления — настолько, насколько это возможно.
На самом деле после знакомства с ними уравнения оказываются довольно дружелюбными созданиями — ясными, четкими, иногда даже прекрасными. Тайная истина об уравнениях состоит в том, что они представляют собой простой, ясный язык для описания целого ряда «рецептов» по вычислению разных вещей. Когда я буду в состоянии выразить такой рецепт словами или просто дать вам общее представление о том, что происходит, не вдаваясь в несущественные детали, я так и буду делать. В редких случаях, тем не менее, использование слов становится столь громоздким, что нам придется прибегнуть к символам и специальным обозначениям.
В этой книге имеются три важных типа обозначений, и два из них я упомяну прямо сейчас. Одно — это наш дружище x, то есть «неизвестное». Этот символ обозначает число, которое мы еще не знаем, но значение которого отчаянно пытаемся найти.