Иэн Стюарт - Истина и красота. Всемирная история симметрии.
Внимательное изучение некоторых из тем в «Началах» не прямо, но убедительно свидетельствует, что Эвклид должен был в какой-то момент учиться в Платоновой Академии в Афинах. Только там, например, он мог узнать о геометрии Эвдокса и Теэтета. Что касается его характера, то все, что у нас есть, — это некоторые фрагменты из Паппа, который сообщает, что Эвклид был «мягок и любезен со всеми, кто мог хоть в малейшей степени способствовать развитию математики, внимательно следил, чтобы никого каким-либо образом не задеть, но при этом был настоящим ученым, не превозносящим самого себя». Дошло до нас и несколько анекдотов, один из которых передает Стробей. Один из учеников Эвклида спросил его, какова будет его выгода от изучения геометрии. Эвклид позвал раба со словами: «Дай этому человеку три обола, раз он хочет извлекать прибыль из учебы».
Отношение греков к математике сильно отличалось от того, которое господствовало среди вавилонян и египтян. В тех культурах математика рассматривалась в первую очередь в практическом плане — хотя «практическое» могло означать такую ориентацию тоннеля в пирамиде, чтобы душе-ка умершего фараона легче было отправиться напрямую к Осирису. Для некоторых же из греческих математиков числа были не инструментами, время от времени привлекавшимися для подкрепления мистических верований, а самой сутью этих верований.
Аристотель и Платон сообщают о культе, центральной фигурой которого был Пифагор и который расцвел около 550 года до Р.Х. Согласно верованиям адептов этого культа, математика, в особенности числа, есть основа всего творения. Пифагорейцы развили мистические взгляды на гармонию вселенной, основанные отчасти на том открытии, что гармония нот на струнном инструменте связана с простыми математическими закономерностями. Если струна звучит на определенной ноте, то струна вполовину короче звучит на октаву выше, что дает наиболее гармоничный из всех интервалов. Они исследовали различные числовые закономерности, в частности «многоугольные» числа, возникающие, когда объекты выстраиваются так, чтобы образовать многоугольники. Например, «треугольные числа» 1, 3, 6 и 10 возникают из треугольников, а «квадратные числа» 1, 4, 9 и 16 — из квадратов.
Треугольные и квадратные числа.
Пифагореизм включал в себя не лишенную определенных странностей нумерологию — например, число 2 рассматривалось как мужское, а 3 как женское, — но тот взгляд, что глубинная структура природы имеет математический характер, и сегодня лежит в основе большей части теоретического знания. Хотя поздняя греческая геометрия была менее мистической, греки в целом воспринимали математику как самоцель — скорее как ветвь философии, нежели как инструмент.
Есть причины полагать, однако, что этим не все сказано. Твердо установлено, что Архимед, который мог бы быть учеником Эвклида, использовал свои математические способности для создания мощных машин и военных механизмов. Сохранилось очень немного замысловатых греческих устройств, изобретательный замысел и точность исполнения которых указывают на поддерживаемую в полной мере традицию высокого мастерства — античный вариант «прикладной математики». Самый, возможно, известный пример — это механизм, найденный на морском дне вблизи островка Антикитера: по-видимому, он представляет собой устройство для расчета движения небесных тел, выполненное в виде шестеренок, сложным образом сцепленных друг с другом.
Эвклидовы «Начала», без сомнения, укладываются в это утонченное представление о греческой математике — потому, возможно, что это представление в значительной мере и основано на «Началах». Основной акцент в книге делается на логику доказательства, при этом нет ни намека на возможность их практического применения. Но самое важное для нашего рассказа свойство «Начал» не в том, что там говорится, а в том, чего там нет.
Эвклид осуществил два великих нововведения. Первое — это концепция доказательства. Эвклид отказывается принимать какое бы то ни было математическое утверждение как истинное, пока оно не установлено с помощью последовательности логических шагов, которые позволяют вывести данное утверждение из того, что уже известно. Второе нововведение — это осознание того факта, что процесс доказательства должен иметь начало и что эти исходные утверждения доказать нельзя. Таким образом, Эвклид формулирует пять фундаментальных предположений, на которых основываются все его дальнейшие построения. Четыре из них просты и непосредственны: две точки можно соединить прямой линией; любой конечный отрезок прямой можно продолжить; можно провести окружность с любым центром и любым радиусом; все прямые углы равны между собой.
Но пятый постулат — совсем другого рода. Он длинный и сложный, а утверждаемое в нем вовсе не столь самоочевидно. Его основное следствие состоит в существовании параллельных прямых — таких, которые никогда не пересекаются, но продолжаются без ограничения в одном и том же направлении, при этом всегда находясь на одном и том же расстоянии друг от друга, как два тротуара по сторонам бесконечно длинной, идеально прямой дороги. В действительности Эвклид формулирует требование, чтобы при пересечении двух линий третьей первые две пересекались с той стороны, где два образованных угла дают в сумме величину, меньшую двух прямых углов. Оказывается, что это предположение логически эквивалентно существованию в точности одной линии, параллельной заданной линии и проходящей через заданную точку вне этой линии.
Пятый постулат Эвклида.
В течение столетий пятый постулат рассматривался как позорное пятно — как нечто такое, что следует устранить путем вывода его из четырех других или же заменой его на нечто более простое и столь же самоочевидное, как и остальные постулаты. К девятнадцатому столетию математики поняли, что Эвклид был абсолютно прав, когда включил в свои предположения пятый постулат: им удалось доказать, что его нельзя вывести из остальных.
Для Эвклида логические доказательства составляли существенное свойство геометрии, и доказательство поныне остается фундаментом всей математики. Утверждение, у которого нет доказательства, воспринимается с подозрением вне зависимости от того, сколь много конкретных свидетельств говорит в его пользу и сколь важными могут оказаться его следствия. Физики, инженеры и астрономы, напротив, нередко относятся к доказательствам с пренебрежением — как к некоторому педантичному довеску, поскольку у них есть для него эффективная замена — наблюдение.
В качестве примера представим себе астронома, который пытается вычислить движение Луны. Он запишет математические уравнения, определяющие движение Луны, и тут же застрянет, поскольку не видно никакого способа решить эти уравнения точно. Тогда наш астроном может слегка схитрить, вводя в свои уравнения различные упрощающие приближения. Математика будет волновать вопрос, могут ли эти приближения серьезно повлиять на ответ, и он будет стремиться доказать, что с ними все в порядке. У астронома же есть иной способ проверить осмысленность своих действий. Он может посмотреть, действительно ли движение Луны таково, как следует из его вычислений. Если да, то этим одновременно обосновывается метод (поскольку получается правильный ответ) и проверяется теория (по той же причине). Замкнутого логического круга здесь нет, потому что если метод математически некорректен, то почти наверняка он не позволит правильно предсказать движение Луны[6].
Без доступа к роскоши наблюдений или экспериментов математикам приходится проверять свою работу, исходя из ее внутренней логики. Чем важнее следствия из некоторого утверждения, тем важнее убедиться, что это утверждение истинно. Так что доказательство становится даже еще важнее, когда всем хочется, чтобы данное утверждение было верным, или когда из его истинности будет вытекать огромный объем следствий.
Доказательства не могут висеть в воздухе, и их нельзя до бесконечности возводить к другим, логически им предшествующим. Где-то у них должно быть начало, и начало это по определению состоит из вещей, которые не доказываются и никогда не будут доказываться. Сегодня мы называем эти недоказываемые исходные предположения аксиомами. Для математической теории аксиомы представляют собой правила игры.
Всякий, кто возражает против аксиом, может при желании их изменить; однако результатом таких действий будет совсем другая история. Математика не утверждает, что некоторое утверждение истинно: она утверждает, что если принять ряд предположений, то данное утверждение должно быть их логическим следствием. Отсюда не следует, что аксиомы не подлежат изменениям. Математики могут обсуждать вопрос о том, предпочтительна ли данная система аксиом по сравнению с другими в отношении тех или иных целей, или же вопрос о том, представляет ли данная система какой-нибудь интерес сама по себе. Но эти дискуссии не касаются внутренней логики любой из выбранных систем аксиом и получаемых из них следствий. Они касаются лишь того, какие из этих систем заслуживают внимания, вызывают интерес или представляют собой хорошее развлечение.