Kniga-Online.club

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Читать бесплатно Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

- 241 -

от того, как его резали, и что, разрезанный параллельно образующей, он и есть "Радость Кита", которая смертельна для врагов. Не успел Илюша спросить, при чем тут враги и киты, как Радикс уже состроил кислую мину и сказал:

- Слушай! Ну... не надо. Ну, зачем так делать? Ведь нехорошо! ..

Асимптотос густо покраснел и подал кусок конуса Илюше.

Как только Илюша взял в руки этот кусок, откуда-то раздался громкий треск и в воздух полетели сотни разноцветных ракет.

- Это в честь нашего сечения! - сказал Асимптотос. - Как ты видишь, ракеты летят в воздух по кривым, которые очень похожи на форму нашего среза. Когда снаряд летит из пушки, то он тоже двигается по этой кривой. Вот почему наш сыр так страшен врагам. Когда бьет фонтан, его струя летит вверх и падает так же, как ракета. Вот почему этот сыр так любят киты - это ведь они выдумали фонтан! Когда твои современники строят прожектор, то его отражательное зеркало тоже делается по этой кривой.

- Я ее где-то недавно видел! -воскликнул Илюша.

- Все может быть, - отвечал Коникос. - Может быть, ты видел большой бетонный железнодорожный мост? Может быть, ты видел кривую квадратов натурального ряда? Может быть, ты видел, как льется вода из Сочки?

- Не-ет, - сказал Илюша. - Постой-ка! Радикс!

А вот та кривая, которую мы рисовали в Схолии Двенадцатой?

- 242 -

- Мы их много рисовали...

- Вот та, которая получается из квадратного уравнения.

- Ах, эта! - воскликнул Асимптотос. - Она самая! Она называется параболой.

Однако Илюша успел уже сообразить, что сыр (тот самый, запрещенный, который провалился!), будучи параболически разрезан, приобретал особый, необыкновенный вкус и об этом-то и вспоминал милый Асимптотос.

- Итак, - продолжал Асимптотос, - срез помер третий! Внимание!

Теперь, когда Илюша взглянул на конус, то он увидел, что тот удвоился. Из вершины конуса вырос на той же самой оси еще один конус, стоящий вверх дном. Асимптотос снова начал резать. Теперь широкое лезвие ножа двигалось сверху вниз параллельно высоте нижнего конуса, то есть общей оси двух конусов. Как и следовало ожидать, Асимптотос отрезал сразу два кусочка от конусов.

- Необычайной формы! - заявил Асимптотос. - Идет главным образом на подтверждение закона Бойля-Мариотта, потому что объем газа обратно пропорционален давлению. В самом простом виде это сечение дает нам кривую обратных величин чисел. Если же эту кривую подвергнуть таинственной обработке[17] при помощи Знаменитого и Всемогущего Змия, то получается нечто совершенно неожиданное: продолжительность жизни астронома увеличивается ровно в два раза, так как новая кривая дает ему в руки логарифмы, а они очень сокращают длиннейшие астрономические вычисления. Кривая эта называется гиперболой. И если ты вспомнишь синьориту Одну Энную, то есть возьмешь за ординаты числа, обратные абсциссам, то эту кривую и получишь.

Затем Асимптотос улыбнулся и произнес:

- Срез номер четвертый!

- 243 -

Он снова подошел к конусу, который опять принял свой прежний вид, и начал его резать наклонно к основанию, но не настолько, чтобы сечение прошло через основание конуса.

Кривая квадратов натурального ряда.

- Кривая этого поразительного сечения, - произнес Асимптотос торжественно, - называется эллипсом. Она имеет самое непосредственное отношение ко Вселенной, потому что Земля ходит вокруг Солнца именно по эллиптической орбите! И мы еще поговорим об этом, когда угостим тебя тем прелестным напитком, который бьет у нас из фонтана. Кривая эта долго занимала самые просвещенные умы, ибо длину ее страшно трудно было вычислить. Как вычисляется длина окружности, ты знаешь. Длину дуги параболы вычислить тоже не так уж трудно, если ты, конечно, заручишься помощью Величайшего Змия. Совсем другое дело с этой эллиптической дугой.

Еще Бонавентура Кавальери пытался вычислить ее длину, но ошибся и признался, что это ему не удалось. Тут даже сам Многомощный Змий был некоторое время в недоумении. Ты, наверно, знаешь, что на свете есть тригонометрические функции?

- Синус, косинус, тангенс... - начал Илюша.

- Вот именно. Скажу тебе под большим секретом, что у нашей приятельницы гиперболы тоже есть свои "синусы", и "косинусы". Они так и называются - гиперболический синус, гиперболический косинус. А у эллипса есть свои эллиптические функции. Штука это довольно-таки хитрая...

- Один из основателей нашего дивного домика, - продолжал Коникос, - великий Аполлоний Пергейский, как и все его современники, называл эти кривые коническими сечениями, ибо ты сам видел, что мы их все получили, рассекая конус.

- 244 -

- Эллипс, впрочем, - добавил Асимптотос, - ты можешь получить и из цилиндра, рассекая его наклонно к основанию.

Наверное, ты уж это не раз и делал, когда отрезал себе ломтик вкусной колбаски. Надо тебе кстати сказать, что ко времени возрождения наук и искусств в Европе - примерно в шестнадцатом веке - интерес к этим замечательным кривым возник раньше всего у зодчих, которым приходилось при проектировании и возведении колонн иметь дело с цилиндрическими сечениями. Но Папп Александрит в свое время излагал учение об этих кривых как об особых геометрических местах.

Тут Асимптотос поднял свой корявый указательный палец, чтобы Илюша оценил по достоинству все значение этого важного открытия. А Илюша мгновенно вспомнил, что ему рассказывал Радикс в Схолии Двенадцатой насчет геометрических мест.

- Так вот слушан, что он придумал! Первое коническое сечение - круг - есть известное тебе геометрическое место точек, лежащих на равном расстоянии от одной точки, которая является его центром. Возьмем теперь на плоскости прямую АС и точку F, лежащую вне этой прямой. Опустим из точки С перпендикуляр, возьмем на нем некоторый отрезок, а конец этого отрезка Е соединим с данной точкой F, и если теперь линии EF и СЕ будут равны, то тогда точка Е лежит на параболе. Другими словами, парабола есть геометрическое место точек, равноотстоящих от данной прямой АС, которая называется директрисой, и данной точки F, которая называется фокусом.

Если ты спросишь, почему точка F носит такое странное наименование, то я тебе открою, что слово "фокус" по-латыни обозначает "очаг" (а поэт Вергилий употреблял его даже в смысле "костер"), то есть место, где раскладывают огонь и откуда исходит свет. А при этом знай, что парабола имеет еще одно чудесное свойство. Если ты поместишь в точку F источник света, то каждый луч, дойдя до параболы и отразившись от нее, будет двигаться в направлении, параллельном оси симметрии параболы.

Вот почему луч прожектора такой узкий и длинный. Конечно, он в небе, как ты, наверное, замечал, тоже немного расширяется, уходя от прожектора, но это оттого, что источник света - не точка и, кроме того, изготовить математически точное параболическое зеркало слишком трудно.

- 245 -

И Аполлоний и великий Архимед горячо любили эту кривую, но только уж время Греции уходило, а с ним уходило и время их любимой и поистине прекрасной науки...

- Но ведь теперь, - осторожно возразил Илюша, - даже мы, дети, учим про вашу параболу. Чего же вам огорчаться?

- Теперь да, - отвечал Коникос за своего пригорюнившегося друга. - Но знаешь ли ты, что после того, как рухнула древняя культура, Рим погрузился в такую бездну невежества, что в восьмом веке вашей эры во всей Западной Европе было, может быть, только несколько человек, которые могли правильно вычислить площадь треугольника или делить дроби?

- Я не слыхал об этом, - ответил Илюша. - Неужели же европейским математикам пришлось все начинать сначала?

- Нет, - ответил Коникос. - Нашлись люди, которые сохранили и нашу науку и наши книги. Это были ученые арабы.

Ведь даже слово "алгебра" - арабское слово и означает некий способ решения алгебраических задач.

- Про слово я слыхал, - ответил Илюша. - Но мне хотелось бы узнать, как математике пришлось бежать из Европы и искать приют у арабов.

- Ах, - сказал грустно Коникос, - это невеселая история! Великая наука философия и искусство древней Эллады были истинным чудом, и никогда люди не перестанут удивляться им и восхищаться ими! Но я, глядя на тебя, мальчик, из глубины тысячелетий, считаю тебя, а не древних греков, настоящим чудом! Ты еще совсем птенец желторотый и все-таки уже прочел несколько книг Евклида, и при этом никто даже не порол тебя, как это полагалось в темное время после падения Рима.

- А зачем же пороть? - удивленно спросил Илюша.

- Не зачем, а отчего! Изучение науки было до того трудным, что на него без жесточайшего принуждения были способны только исключительно одаренные люди. Уже гораздо позже восьмого века в обычай вошло давать ученую степень "магистра математики" студенту, который с грехом пополам сумел добраться до теоремы Пифагора. Вот до чего все это было трудно и как упало образование!

Перейти на страницу:

Сергей Бобров читать все книги автора по порядку

Сергей Бобров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


ВОЛШЕБНЫЙ ДВУРОГ отзывы

Отзывы читателей о книге ВОЛШЕБНЫЙ ДВУРОГ, автор: Сергей Бобров. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*