Генри Дьюдени - 200 знаменитых головоломок мира
106. В конце семнадцатых суток улитка взберется на 17 футов, а к концу восемнадцатого дня доберется до верхнего края и тут же заснет и начнет соскальзывать вниз и к концу восемнадцатых суток окажется на другой стороне в 2 футах от верхнего края стены. За сколько она спустится на оставшиеся 18 футов? Если улитка соскальзывает на 2 фута ночью, то днем, взбираясь вверх, она, очевидно, преодолевает тенденцию этого соскальзывания. Гребя вверх по течению реки, мы преодолеваем это течение, тогда как двигаясь по реке вниз, мы используем течение, которое нам помогает. Если улитка днем может подняться на 3 фута, преодолевая тенденцию к соскальзыванию на 2 фута, то, двигаясь по полу, она может при тех же усилиях за день пройти расстояние в 5 футов. Когда же она опускается вниз, то к этим 5 футам надо добавить еще 2 фута за счет соскальзывания. Таким образом, на пути вниз за день она проходит 7 футов, а если к ним добавить 2 фута ночного соскальзывания, то получится, что за сутки улитка спускается на 9 футов. Значит, на преодоление 18 футов потребуется двое суток, а на все путешествие — ровно 20 суток.
107. Когда Монтукла в своем издании книги Озанама «Recreations in Mathematics» заявил, что «существует не более трех равновеликих прямоугольных треугольников с целыми сторонами, но имеется сколько угодно таких прямоугольных треугольников с рациональными сторонами», он, как это ни странно, упустил из виду, что если вы приведете рациональные длины сторон к общему знаменателю и удалите этот знаменатель, то получите значения целых сторон искомых треугольников.
Каждому читателю стоит знать, что если мы возьмем любые два числа m и n, то m2 + n2, m2 — n2 и 2mn будут тремя сторонами рационального прямоугольного треугольника[37]. Здесь m и n называются производящими числами. Чтобы образовать три таких равновеликих треугольника, мы воспользуемся следующими простыми соотношениями, где m — большее число:
mn + m2 + n2 = a,
m2 – n2 = b,
2mn – n2 = c.
Теперь, если мы образуем три треугольника с помощью трех пар порождающих чисел, а и b, а и с, а и b + с, то их площади окажутся равными. Это та самая небольшая задача, о которой Льюис Кэрролл писал в своем дневнике: «Сидел прошлой ночью до 4 часов утра над соблазнительной задачей, которую мне прислали из Нью-Йорка, «найти три равновеликих прямоугольных треугольника с рациональными сторонами». Я нашел два... но не смог найти трех!»
Сейчас я приведу формулу, с помощью которой мы всегда по заданному рациональному прямоугольному треугольнику можем найти рациональный прямоугольный треугольник равной площади. Пусть z — гипотенуза, b — основание, h — высота, а — площадь данного треугольника; тогда все, что мы должны сделать, — это образовать рациональный прямоугольный треугольник с помощью производящих чисел z2 и 4а и привести каждую сторону к знаменателю 2z(b2 — h2), и мы получим требуемый ответ в целых числах.
Ответ в наименьших целых числах на нашу головоломку такой:
Площадь в каждом случае равна 341 880 квадратным единицам. Я не стану здесь подробно показывать, как именно я получил эти числа. Однако я скажу, что первые три треугольника принцы получили описанным выше способом, отправляясь от чисел 3 и 4, которые приводят к порождающим парам 37, 7; 37, 33; 37, 40. Эти три пары чисел дают решение неопределенного уравнения a3b - b3a = 341 880.
Если мы сможем найти другую пару чисел, то дело будет сделано. Этими производящими числами будут 56, 55, которые и приводят к последнему треугольнику. Следующий ответ, наилучший после данного, который мне удалось найти, получается из 5 и 6, порождающих производящие пары 91, 11; 91, 85; 91, 96. Четвертой порождающей парой будет 63, 42.
Читатель поймет из того, что я сказал выше, что существует сколь угодно много равновеликих рациональных прямоугольных треугольников, стороны которых выражаются целыми числами.
108. Вот простое решение головоломки о трех девятках:
Чтобы разделить 18 на •9[38] (или ), мы, разумеется, умножим это число на 10 и разделим его на 9. В результате, как и требовалось, получится число 20.
109. Решение состоит в следующем. Партия двух игроков, в совершенстве владеющих данной игрой, всегда должна заканчиваться вничью. Ни один из таких игроков не может выиграть у другого иначе, как по недосмотру противника. Если Нолик (первый игрок) занимает центр, Крестик должен занять угол на своем первом ходу, в противном случае Нолик, несомненно, выиграет. Если Нолик на первом ходу занимает угол, то Крестик сразу же должен занять центр, иначе он проиграет. Если Нолик начинает с боковой клетки, то обоим игрокам следует быть очень внимательными, ибо имеется много подводных камней. Однако Нолик может безопасно для себя свести дело к ничьей, а выиграть он может лишь по недосмотру Крестика.
110. Решение таково. Первый игрок может всегда выиграть при условии, что первый ход он сделает в центр. Хорошей вариацией данной игры будет условие, что первый игрок на первом ходу не имеет права ходить в центр. В этом случае второй игрок сразу же должен пойти в центр. Такая ситуация должна кончиться ничьей, но чтобы свести игру к ней уверенно, первый игрок обязан пойти на своем первом и втором ходах в два смежных угла (например, в 1 и 3). Тогда игра потребует огромного внимания с обеих сторон.
111. Сэр Исаак Ньютон в своей «Универсальной арифметике» показал нам, что мы можем разделить волов в каждом случае на две части — одна часть съедает прирост травы, а другая — накопленную траву. Первая часть меняется прямо пропорционально размеру поля и не зависит от времени; вторая тоже меняется прямо пропорционально размеру поля и, кроме того, обратно пропорционально времени. Со слов фермера мы определяем, что 6 волов съедают прирост травы на 10-акровом поле, а 6 волов съедают траву на 10 акрах за 16 недель. Следовательно, если 6 волов съедают прирост травы на 10 акрах, то 24 вола будут его съедать на 40 акрах.
Далее мы находим, что если 6 волов съедают накопленную траву на 10 акрах за 16 недель, то
12 съедают траву на 10 акрах за 8 недель,
48 съедают траву на 40 акрах за 8 недель,
192 съедают траву на 40 акрах за 2 недели,
64 съедают траву на 40 акрах за 6 недель.
Складывая полученные два результата (24 + 64), мы находим, что 88 волов могут прокормиться на 40-акровом лугу в течение 6 недель при условии равномерного роста травы в течение всего времени.
112. Нам известно, что пуля, убившая мистера Стэнтона Маубрея, попала в самый центр циферблата и мгновенно спаяла между собой часовую, минутную и секундную стрелки, так что они все стали поворачиваться как одно целое. Головоломка состояла в том, чтобы, исходя из взаимного расположения стрелок, определить точное время выстрела.
Нам известно также, а рисунок часов подтверждает это, что часовая и минутная стрелки отстояли друг от друга ровно на 20 делений, «треть окружности циферблата». Далее, в течение 12 часов часовая стрелка 11 раз бывает на 20 делений впереди минутной и 11 раз — на 20 делений позади нее. Из рисунка видно, что нам следует рассмотреть лишь первый случай. Если мы начнем от четырех часов и будем все время добавлять по 1 ч 5 мин и 27 с, то получим все 11 расположений, последнее из которых придется на 2 ч 54 мин 32 с. Еще одно добавление указанной величины приведет нас вновь к четырем часам. Если теперь мы изучим циферблат, то обнаружим, что секундная стрелка находится приблизительно на 22 деления позади минутной, а если мы просмотрим все наши 11 случаев, то заметим, что лишь в последнем из них секундная стрелка занимает указанное положение. Следовательно, выстрел произошел ровно в 2 ч 54 мин 32 с, или без 5 мин 27с три. Это правильный и единственно возможный ответ к данной головоломке.
113. Хотя объем бруска достаточен для того, чтобы получить 25 кусков, на самом деле удается вырезать лишь 24. Сначала уменьшите длину бруска в полдюйма. Меньший кусок отрежьте, ибо его не удастся использовать. Разрежьте больший кусок на три плитки толщиной в 1 дюйма, и вы обнаружите, что из каждой плитки легко можно вырезать по восемь блоков без дальнейших потерь материала.
114. Наименьшее число бисквитов равно 1021, откуда видно, что это были те миниатюрные бисквитики, которые любят дети. Общее решение состоит в том, что для случая n человек число бисквитов должно равняться m (nn+1) — (n — 1), где m — любое целое число. Каждый человек получит при окончательном разделе m (n — 1)1 — 1 бисквитов, хотя в случае двух человек, когда m = 1, при окончательной дележке бисквит получит лишь собака. Разумеется, в любом случае каждый человек крадет n-ю часть бисквитов, отдав предварительно лишний бисквит собаке.