Kniga-Online.club
» » » » Генри Дьюдени - Кентерберийские головоломки

Генри Дьюдени - Кентерберийские головоломки

Читать бесплатно Генри Дьюдени - Кентерберийские головоломки. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Трудности возникают исключительно в тех случаях, когда п – простое число. При п = 2 мы получаем простое число 11. Для п = 3, 5, 11 и 13 делители соответственно равны (3×37), (41×271), (21649×513 239) и (53×79×265371653). В этой книге я привел уже делители для п = 7 и 17. Делители в случаях п = 19, 23 и 37 неизвестны, если они вообще имеются.[32] При п = 29 делителями будут (3191×16 763×43 037×62 003×77 843× 839 397); при п = 31 одним из делителей будет 2791; при п = 41 два делителя имеют вид (83×1231).

Что же касается четных и, то следующая любопытная последовательность сомножителей, несомненно, заинтересует читателя. Числа в скобках – простые.

п = 2 = (11)

п = 6 = (11) × 111 × 91

п = 10 = (11) × 11 111 × (9091)

п =14 = (11) × 1 11l 111 × (909091)

п =18 = (11) × 111 111 111 × 90 909 091

Или мы можем записать делитель иначе:

п = 2 = (11) п = 6 = 111 × 1001

п = 10 = 11 111× 100001

п = 14 = 1 111 111 × 10 000 001

п =18 = 111 111 111 × 1 000 000 001

В приведенных выше двух таблицах п имеет вид 4m + z. Когда п имеет вид 4m, делители можно записать следующим образом:

п= 4 = (11) × (101)

п= 8 = (11) × (101) ×10001

п = 12 = (11) × (101) × 100 010 001

п = 16 = (11) × (101) × 1 000 100 010 001[33]

При п = 2 мы получаем простое число 11; при п = 3 делителями будут 3 × 37; при п = 6 они имеют вид 11 × 3 × 37 × 7 × 13; при п = 9 получается 32 × 37 × 333 667. Следовательно, мы знаем, что делителями при п = 18 будут 11 × 32 × 37 ×7 × 13 × 333 667, тогда как остающийся множитель – составной и может быть представлен в виде 19 × 52 579. Это показывает, как можно упростить работу в случае составного п.

48. Наименьшее число шагов равно 118. Я приведу решение полностью. Белые кружки двигаются по часовой стрелке, а черные – в противоположном направлении. Ниже приведены номера кружков, которые следует перемещать в указанном порядке. Сдвигаете ли вы просто кружок на соседнее место или перепрыгиваете через другой кружок, станет ясно из расположения кружков, ибо иной альтернативы не будет. Ходы, указанные в скобках, следует совершать пять раз подряд: 6, 7, 8, 6, 5, 4, 7, 8, 9, 10, 6, 5, 4, 3, 2, 7, 8, 9, 10, 11 (6, 5, 4, 3, 2, 1), 6, 5, 4, 3, 2, 12 (7, 8, 9, 10, И, 12), 7, 8, 9, 10, 11, 1, 6, 5, 4, 3, 2, 12, 7, 8, 9, 10, 11, 6, 5, 4, 3, 2, 8, 9, 10, 11, 4, 3, 2, 10, 11, 2. Таким образом, при заданных условиях мы сделали 118 ходов; черные лягушки поменялись с белыми местами, причем номера 1 и 12 также поменялись местами.

В общем случае потребуется 3n2 + 2n – 2 ходов, где п равно числу лягушек каждого цвета. Закон, управляющий последовательностью ходов, легко обнаружить, рассматривая наиболее простые случаи, где п = 2, 3 и 4.

Если вместо кружков с номерами 1 и 12 должны поменяться местами кружки с номерами 6 и 7, то потребуется пг – 4п + 2 ходов. Если мы придадим п значение 6, как в нашем случае, то получится 62 хода.

Как удалось бежать королевскому шуту

Хотя королевский шут и пообещал «потом все объяснить», записей, где бы говорилось, как он это сделал, не сохранилось. Поэтому я предложу читателю мою собственную точку зрения относительно вероятного решения предложенных загадок.

49. Шут «разделил веревку пополам» – это вовсе не означает, что он разрезал ее на две равные части. Без сомнения, он просто расплел жгуты, из которых она была свита, и разъединил их, так что у него получились две веревки, равные по длине исходной, но вдвое тоньше ее. Связав их, он получил веревку, которая оказалась почти вдвое длиннее исходной и позволила ему спуститься вниз из окна темницы.

50. Как шут нашел во тьме путь из лабиринта? Он просто прикоснулся своей левой (или правой) рукой к стене и, не отрывая ее, двинулся вперед Пунктир на рисунке поможет проследить его путь, если шут пошел из А влево Если читатель попытается проложить аналогичный путь вправо, то он также добьется успеха. На самом деле эти два пути вместе покрывают все участки стен лабиринта, за исключением двух изолированных частей слева (одна из них U-, а другая – Е-образная).

Это правило приложимо к большинству лабиринтов и головоломных садов; однако если бы центральная часть оказалась окруженной изолированной стеной наподобие кольца со щелью, то шут все ходил бы и ходил вокруг этого кольца.

51. Головоломка состояла в том, чтобы найти английское слово из трех букв, по одной букве на каждом диске. В английском языке нет слов, составленных из одних согласных, а единственной гласной на всех дисках является Y. Ни одно английское слово из трех букв, начинающиеся с Y, не содержит в качестве остальных букв одни согласные, а слова из трех букв, кончающиеся на Y (с двумя согласными), либо начинаются на S, либо в качестве второй буквы содержат H, L или R. Но этих четырех согласных нет на дисках. Следовательно, Y должно стоять в середине, а единственное подобное слово, которое мне удалось обнаружить, – это PYX.[34] Так что именно оно и служит решением нашей головоломки.

52. Без сомнения, читатель улыбнется, услышав, что лодка с человеком может двигаться вперед в стоячей воде с помощью причальной веревки. И тем не менее это факт. Если шут привяжет конец веревки к корме, а потом, стоя на носу, начнет делать ею резкие рывки, то лодка будет двигаться вперед. Этим часто пользуются на практике и утверждают, что таким образом можно развить скорость от двух до трех миль в час.

53. Эта головоломка должна показаться многим читателям абсолютно неразрешимой. Шут сказал: «В каждый из 16 садов я вошел по одному и не более разу». Если мы проследуем путем, указанным на рисунке пунктиром, то обнаружим, что совсем нетрудно войти по одному разу во все сады, кроме одного, прежде чем мы достигнем последнего сада с выходом В.

Трудность состоит в том, чтобы войти в сад, отмеченный звездочкой, поскольку если мы уйдем из сада В, то нам перед уходом придется войти туда второй раз, что запрещено условием. Трюк состоят в том, что войти в сад со звездочкой следует, не покидая при этом другой сад. Представьте себе, что шут, подойдя к проходу (пунктирная линия делает здесь острый угол), хотел спрятаться в саду со звездочкой, но, уже поставив одну ногу на эту звездочку, обнаружил, что тревога была напрасной. Он с полным основанием, мог сказать: «Я вошел в сад со звездочкой, ибо я перенес в него одну ногу и часть корпуса, но я не вошел в другой сад дважды, поскольку, войдя туда однажды, я не покидал его до тех пор, пока не вышел через ворота В». Это единственный возможный ответ, и, конечно, шут имел в виду именно его.

54. Решение этой головоломки лучше всего объяснить с помощью рисунка. Если шут положил свои 8 досок указанным здесь способом через угол, образованный канавой, то он сумел довольно просто перебраться через нее.

Таким образом королевский шут мог преодолеть все трудности и благополучно бежать, что он, как нам сообщает, и сделал.

Как совершались различные трюки на рождественском вечере у сквайра

Запись одного из ежегодных «головоломных рождественских вечеров» у сквайра Дэвиджа, сделанная одной из юных родственниц этого старого джентльмена, которая часто проводила веселые рождественские праздники в Стоук Коурси-Холле, не дает разгадки тайн. Поэтому я приведу мои собственные ответы на все головоломки и попытаюсь сделать их по возможности понятнее для тех, кто более или менее новичок в таких делах.

65. У мисс Чарити Локайер был, очевидно, в запасе какой-то трюк, и, мне кажется, что скорее всего он состоял в следующем. Она предложила разложить десять кусков сахару по трем чашкам так, чтобы в каждой оказалось нечетное число кусков.

На рисунке приведен возможный ответ, а цифры на чашках означают число кусков, положенных в каждую из них по отдельности. Помещая чашку, содержащую один кусок, в чашку, содержащую два куска, мы можем проверить, что действительно каждая из них содержит нечетное число кусков. В оставшейся чашке 7 (нечетное число) кусков. Итак, в одной чашке находится 1 кусок, во второй – 3 и в третьей – 7 кусков. Очевидно, что если чашка содержат другую чашку, то в ней находится и содержимое этой чашки.

Всего имеется пятнадцать различных решений этой головоломки:

Перше два числа в тройках показывают число кусков соответственно во внутренней и внешней чашках, вставленных друг в друга. Стоит отметить, что внешняя чашка этой пары сама по себе может быть пустой.

Перейти на страницу:

Генри Дьюдени читать все книги автора по порядку

Генри Дьюдени - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Кентерберийские головоломки отзывы

Отзывы читателей о книге Кентерберийские головоломки, автор: Генри Дьюдени. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*