Kniga-Online.club
» » » » Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Читать бесплатно Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

С учетом того, что а13  имеет знак +, получим:

Теперь, чтобы вычислить определитель матрицы А, нужно свести полученные выше результаты в одно выражение:

Пусть дана матрица A:

Ее определитель вычисляется следующим образом:

Предположим, что даны три вектора, исходящие из одной точки. Допустим, их координаты таковы: u-> = (2, -1, 4), v-> = (3, 3, -2) и w-> = (-3, 2, 1). Если мы вычислим определитель:

получим 71. Что означает это число? Поскольку в нашем примере векторы исходят из одной точки, значение определителя равно объему параллелепипеда, построенного на этих трех векторах.

Как делить матрицы. Обратные матрицы и их применение в биологии

Любопытно, что деление матрицы на матрицу невозможно. Однако на помощь придет математическая смекалка. Допустим, что мы хотим разделить 5 на 2, то есть найти значение 5/2, при этом использовать операцию деления нельзя. Напомним, что:

Следовательно, если мы заменим числа 5 и 2 матрицами А и В, получим:

где В-1 — матрица, обратная В. Обратите внимание, что произведение В·В-1 будет равно единичной матрице Е. Отметим, что матрица В должна быть квадратной, то есть иметь одинаковое число строк и столбцов. Кроме этого, матрица В будет иметь обратную только в том случае, если ее определитель отличен от 0.

Найти обратную матрицу для матрицы 3 x 3 несложно, хотя для этого потребуются трудоемкие вычисления. Читатель легко найдет всю интересующую информацию по этому вопросу самостоятельно. Обратную матрицу для матрицы 2 x 2 очень просто найти следующим способом. Пусть дана матрица А:

Обратная ей матрица А-1 определяется напрямую. Она имеет вид:

Напомним, что 1/(ad — bc) — величина, обратная определителю матрицы. Применив программу символьных вычислений Derive, найдем матрицу, обратную матрице А (не будем приводить все промежуточные действия):

Если мы запишем в программе выражение: А^(—1), то получим А-1 то есть обратную матрицу:

Обратные матрицы часто используются в трехмерном компьютерном моделировании, а умножение матриц полезно для обсчета поворотов, например при компьютерном моделировании поворота головы динозавра. Подобные модели широко применяются в биомедицине, а обратные матрицы — при шифровании сообщений, а также в некоторых основных статистических методах многовариантного анализа, который представляет собой совокупность статистических методов, применяющихся для анализа данных в биологии и медицине. Также операции над матрицами используются для решения систем линейных уравнений, о чем мы расскажем в следующей главе.

Матрицы и горошины: законы Менделя

С исторической точки зрения законы Менделя, сыгравшие важную роль в зарождении генетики, не только знаменуют одну из важнейших вех в биологии, но и представляют собой прекрасный пример полных факторных экспериментов. В этом разделе мы представим элементарную модель знаменитых законов наследования, в которой используются матрицы.

Первый закон Менделя, или закон единообразия гибридов (Аа) первого поколения F1, был выведен экспериментально следующим образом. Представьте, что мы скрестили два растения, относящихся к разным чистым линиям (АА и аа). У растения АА все горошины желтые, у растения аа — зеленые. Скрещивание выполняется методом перекрестного опыления: мы отрезаем ножницами тычинку одного растения, например аа, чтобы избежать самоопыления. Затем мы собираем пинцетом пыльцу с другого растения, АA, и переносим ее на первое растение, аа. Изучив потомство, которое Мендель называл первым поколением, или F1, можно убедиться, что все горошины имеют желтый цвет и принадлежат к гибридному типу Аа.

Первый закон Менделя.

После экспериментов, которые помогли Менделю сформулировать первый закон наследования, ученый захотел узнать, отличаются ли желтые горошины (F1), полученные в ходе эксперимента, от горошин растений чистой линии (АА). Чтобы найти ответ на этот вопрос, Мендель провел самоопыление растений из поколения F1 и изучил их потомство, рассмотрев в общей сложности 8023 горошины. После тщательного подсчета ученый обнаружил, что 3/4 горошин были желтыми, 1/4 — зелеными. Этот результат привел к открытию второго закона наследования, или закона расщепления признаков во втором поколении.

Второй закон Менделя.

В матричном представлении второй закон Менделя выглядит так:

Обратите внимание, что этот вектор отражает соотношения, которые генетики называют расщеплением по фенотипу. Сумма элементов матрицы (которая в этом случае состоит из одного столбца) равна единице. В биологической математике такая матрица называется стохастической.

Представьте, что мы провели эксперимент и получили 660 горошин, 510 из них оказались желтыми, 150 — зелеными. Соответствуют ли эти результаты второму закону Менделя? Чтобы узнать это, необходимо ответить на вопрос: каким должно быть количество желтых и зеленых горошин в точном соответствии с этим законом?

Умножим общее число горошин, 660, на вектор-столбец, описывающий второй закон Менделя:

Получим вектор-столбец:

Таким образом, мы должны были получить 495 желтых горошин и 165 зеленых.

Опишем метод, с помощью которого генетики проверяют, соответствуют ли результаты эксперимента математическому закону, а мы сможем узнать, соответствуют ли наши результаты второму закону Менделя.

Схема экспериментального метода применительно к менделевским законам наследования — столпам математической биологии.

Для этого мы используем один из самых популярных в биологии статистических критериев — критерий согласия хи-квадрат. Не вдаваясь в детали, вычислим сумму следующих выражений, которая позволит оценить отклонение фактических данных от результатов, на 100 % соответствующих второму закону Менделя. Обозначим отклонение греческой буквой  (хи):

Затем сравним эту сумму с эталонным значением, которое назовем критическим значением хи-квадрат и обозначим c2 Значение c2 для экспериментов Менделя составляет 3,84. Применим следующий критерий: если сумма 2 больше, чем c2, наши результаты не соответствуют второму закону Менделя. Если же сумма 2 меньше, чем c2, экспериментальные результаты соответствуют второму закону Менделя.

Так как 1,81 меньше критического значения 3,84, результаты эксперимента соответствуют этому закону, а отклонение между фактическими значениями (510 и 150) и теоретическими (495 и 165) обусловлено случайными факторами, не имеющими значения для эксперимента.

Является ли наследование признаков независимым?

Напомним, что, согласно второму закону Менделя, признаки А или а передаются независимо друг от друга. Далее Мендель сделал еще один шаг и задался вопросом: если индивид обладает двумя признаками одновременно, как они передаются следующему поколению? Является ли наследование признаков независимым?

Чтобы ответить на этот вопрос, Мендель рассмотрел следующие два признака горошин: гладкая (А) или морщинистая (а) поверхность и желтый (В) или зеленый цвет (Ь). После того как Мендель выбрал два анализируемых признака, он скрестил растения двух чистых линий. Горошины растений первой линии были гладкими и желтыми (ААВВ), горошины растений второй линии были морщинистыми и зелеными (ааЬЬ). Растения, полученные в результате скрещивания, представляли поколение Р, и от их признаков напрямую зависели признаки первого поколения потомков F1. Обратите внимание, что все гаметы растений ААВВ имели тип АВ, все гаметы растений ааЬЬ — тип ab. После перекрестного опыления растений из различных линий все растения в поколении Fx имели гладкие желтые горошины (генотип АаВЬ). Получив этот результат, Мендель задался вопросом: какими должны быть потомки растений с генотипом АаВЬ, принадлежащих к поколению F1, или каким будет генотип растений поколения F2? В итоге Мендель сформулировал третий закон, или закон независимого наследования признаков.

Перейти на страницу:

Рафаэль Лаос-Бельтра читать все книги автора по порядку

Рафаэль Лаос-Бельтра - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Том 28. Математика жизни. Численные модели в биологии и экологии. отзывы

Отзывы читателей о книге Том 28. Математика жизни. Численные модели в биологии и экологии., автор: Рафаэль Лаос-Бельтра. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*