Kniga-Online.club
» » » » Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Читать бесплатно Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

x < 1,   2 < x < 3,   4 < x < 5,   6 < x < 7,   8 < x < 9,   x > 10.

Приемы, позволяющие решать более сложные неравенства типа (1), станут понятны, если вы разберете примеры 2 и 3 и следующие за ними упражнения.

Пример 2. Решить неравенство (x + 3)(2x + 2)(x − 4)²(5 − x) > 0.

Перепишем неравенство в виде

(x + 3)(x + 1)(x − 4)²(x − 5) < 0,

где в каждой скобке стоит двучлен с коэффициентом 1 при x. Множитель (x − 4)² всегда неотрицателен и только в точке x = 4 обращается в нуль. Поэтому его влияние на решение неравенства

ограничивается тем, что он исключает точку x = 4 (рис. 10.5). Остается проследить чередование знаков в неравенстве

(x + 3)(x + 1)(x − 5) < 0.

Ответ. x < −3,  −1 < x < 4,   4 < x < 5.

Пример 3. Решить неравенство

(3)

Данное неравенство не удовлетворяется в тех точках, где множители, стоящие в знаменателе, обращаются в нуль (x = 4, x = 2). Поэтому исключим эти точки из дальнейшего рассмотрения, обозначив их на рис. 10.6 светлыми кружками.

В точках же, в которых обращается в нуль числитель (x = −3, x = −1, x = 5), неравенство превращается в равенство, т. е. эти точки должны войти в решение неравенства (3). Отметим их на рисунке черными кружками[8]).

Множители (x + 3)² и (x − 4)², не меняющие знака на всей числовой оси, можно опустить, так как их влияние уже учтено. Во всех остальных точках неравенство (3) равносильно такому:

(x + 1)(x − 5)(x − 2) < 0.

Ответ. x ≤ −1,  2 < x < 4,  4 < x ≤ 5.

Упражнения

Решите неравенства:

4. (5 − 2х)(3 − x)³(x − 4)² < 0.

5. 

Иррациональные неравенства. Решая уравнения, мы можем получать следствия данного уравнения и закончить решение проверкой, которая отсеивает посторонние корни. При решении же неравенств обычно получаются целые интервалы решений, что сильно усложняет проверку. Поэтому неравенства преобразовывают так, чтобы не нарушалась равносильность.

Начнем с иррациональных неравенств.

Пример 4. Решить неравенство

(4)

Нередко предлагают такое «решение»:

x² − 55х + 250 < (x − 14)²,

−55х + 250 < −28х + 196,

x > 2,

которое обосновывают следующим образом: «Левая часть меньше правой, но неотрицательна, так как мы имеем дело с арифметическим корнем. Следовательно, обе части данного неравенства неотрицательны, и его можно возвести в квадрат, не нарушая равносильности неравенства».

Чтобы убедиться, что неравенство решено неверно, подставим в данное неравенство, например, x = 10.

Проанализируем ход приведенных здесь рассуждений. Они доказывают, что если неравенство (4) удовлетворяется при некоторых x, то обе части его можно возвести в квадрат, и тогда x > 2. Однако отсюда не следует обратное, что исходное неравенство удовлетворяется при всех x > 2.

Присутствие в неравенстве (4) квадратного корня накладывало на неизвестное определенные ограничения, которые оказались разрушенными после возведения неравенства (4) в квадрат.

Трехчлен x² − 55х + 250 вначале стоял под знаком квадратного корня, а потому должен был быть неотрицательным. После возведения неравенства (4) в квадрат это ограничение исчезло; теперь ничто не мешает трехчлену стать отрицательным. Даже наоборот, в этом случае неравенство x² − 55х + 250 < (x − 14)² удовлетворяется наверняка, так как справа стоит величина, которая не может стать меньше нуля.

Чтобы подкоренное выражение оставалось неотрицательным, мы должны добавить к полученному после возведения в квадрат неравенству требование x² − 55x + 250 ≥ 0, т. е. x ≤ 5, x ≥ 50. Из полупрямой x > 2 оказались выделенными две ее части: 2 < x ≤ 5, x ≥ 50.

Но и теперь еще не все. Достаточно подставить в исходное неравенство значение x = 4, и мы убедимся, что оно не удовлетворяется. Дело в том, что при возведении в квадрат мы устранили еще одно ограничение, которое присутствовало в неравенстве (4). В левой части первоначального неравенства стоит квадратный корень, т. е. неотрицательное число. Чтобы это неравенство удовлетворялось, правая его часть x − 14 должна быть больше нуля. Итак, надо добавить ограничение x − 14 > 0, которое присутствовало в исходном неравенстве и оказалось разрушенным после возведения в квадрат.

Таким образом, после возведения данного неравенства в квадрат, мы должны позаботиться о сохранении всех ограничений, которые присутствуют в данном неравенстве. Неравенство (4) нужно было заменить системой

решая которую мы нашли бы, что

т. е. x ≥ 50.

Упражнения

В каждом из неравенств 6—9 освободитесь от иррациональности, не нарушая равносильности:

6.

7.

8.

9.

Показательные и логарифмические неравенства. При решении показательных и логарифмических неравенств пользуются следующими свойствами:

1. Неравенство f(x)φ(x) > 1, где f(x) > 0, равносильно совокупности двух систем неравенств:

или системе неравенств

1а. Неравенство f(x)φ(x) < 1, где f(x) > 0, равносильно совокупности двух систем неравенств:

или системе неравенств

2. Неравенство logf(x)φ(x) > 0 равносильно совокупности двух систем неравенств:

или системе неравенств

2а. Неравенство  logf(x)φ(x) < 0 равносильно совокупности двух систем неравенств:

или системе неравенств

Решения неравенств  f(x)φ(x) < 1 и  f(x)φ(x) > 1 в предположении, что допускаются отрицательные значения f(x), разобраны в задачах 10.29, 10.30, 10.32.

Запомнить эти свойства можно следующим образом: степень больше единицы, если основание и показатель степени одинаково расположены по отношению к единице и нулю соответственно (т. е. основание правее единицы и показатель правее нуля или основание левее единицы и показатель левее нуля); логарифм больше нуля, если основание и логарифмируемое выражение одинаково расположены по отношению к единице. Если расположение элементов, о которых шла речь, неодинаково, то степень меньше единицы, а логарифм меньше нуля.

10.1. Докажите, что если а + b = 2, где а и b — действительные числа, то а4 + b4 ≥ 2.

10.2. Докажите, что

(1 + a1)(1 + а2)...(1 + аn) ≥ 2n,

если а1, а2, ..., аn, аn — положительные числа и а1а2...аn = 1.

10.3. Дано а + b = с, где а, b, с — положительные числа. Докажите, что

а⅔ + b⅔ > с⅔ .

10.4. Докажите, что −x³ + x² ≤ ¼, если 0 ≤ x ≤ 1.

10.5. Докажите неравенство

при условии, что а + b + с = 1, а подкоренные выражения неотрицательны.

10.6. Докажите неравенство

(а + b)n < 2n(аn + bn),

если а > 0, b > 0, n — натуральное число.

10.7. Докажите, что при а > b > 0 и pq где а, b и с — положительные и не равные друг другу числа, не пользуясь неравенствами между средним арифметическим и средним геометрическим трех чисел.

Перейти на страницу:

Альберт Рывкин читать все книги автора по порядку

Альберт Рывкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Сборник задач по математике с решениями для поступающих в вузы отзывы

Отзывы читателей о книге Сборник задач по математике с решениями для поступающих в вузы, автор: Альберт Рывкин. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*