Kniga-Online.club
» » » » Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления

Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления

Читать бесплатно Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

* * *

МАТЕМАТИКА ПЕРЕХОДНОГО ПЕРИОДА

После публикации «Книги абака» наступил переходный период, ознаменовавшийся сменой парадигмы. Исследователи предприняли попытку классифицировать и упорядочить неизмеримое множество книг и трудов, опубликованных в этот период. Выделяют четыре типа книг.

• Теоретические трактаты, авторы которых следовали по пути Боэция.

• Учебники по арифметике, где описывались приемы вычислений с помощью абака.

• Книги, где описывались алгоритмы действий с арабскими цифрами и способы вычислений на бумаге. Основывались на работах аль-Хорезми.

• Работы, в которых описывались системы счисления для составления церковных календарей.

КНИГОПЕЧАТАНИЕ

Изобретателем книгопечатания подвижными литерами считается Иоганн Гутенберг (1398–1468), который примерно в 1450 году в немецком городе Майнц создал машину для книгопечатания.

Первые книги были напечатаны в 1449–1450 годах, а в 1454–1455 годах он завершил печать знаменитой 42-строчной Библии (имеется в виду число строк на странице). Общее число страниц составляло 1282, книга делилась на несколько томов (как правило, на два). До настоящего времени сохранились 48 копий Библии Гутенберга. Их стоимость на момент печати равнялась зарплате среднего служащего за три года. Хотя книгопечатание подвижными литерами имело огромное значение (благодаря ему стало возможным издание книг в больших объемах, что привело к одной из величайших культурных революций в истории человечества), Иоганн Гутенберг умер в полной нищете.

Страница Библии Гутенберга.

* * *

Гравюра из «Жемчужины философии» (1508) Грегора Рейша, на которой изображены Боэций и Пифагор, состязающиеся в вычислениях. За ними сверху наблюдает Арифметика. Обратите внимание: Боэций (слева) использует арабские цифры, Пифагор производит расчеты с помощью абака.

Доказательством важности математических текстов по арифметике в торговле служит тот факт, что важнейший труд Евклида «Начала» был отпечатан лишь в 1482 году на латинском языке под названием Elementa Geometriae. «Арифметика» Боэция была отпечатана в 1488 году. Первой печатной книгой по алгебре стала «Сумма арифметики, геометрии, дробей, пропорций и пропорциональности» (La primera algebra impresa fue la Summa de Arithmetica, Geometrica, Geometria, Proportion! et Proportionalita) Луки Пачоли, опубликованная в Венеции в 1494 году.

В течение всего XVI века печаталось множество текстов с пояснениями и комментариями к этой книге. Они пользовались большой популярностью, так как труд Пачоли был достаточно сложен для понимания. Несмотря на всю важность этих работ, большинство книг того времени было посвящено арифметике в торговле.

Портрет математика Луки Пачоли кисти Якопо де Варбари, выполненный около 1496 года.

* * *

ЗАДАЧА ПО АРИФМЕТИКЕ В ТОРГОВЛЕ

Манускрипт под номером 102 (A. III 27), хранящийся в муниципальной библиотеке итальянского города Сиены, — один из четырех манускриптов, посвященных арифметике, опубликованных до 1500 года, которые сохранились до наших дней. В нем упоминается следующая задача: «Если хочешь знать о человеке, сколько денег в его кармане, поступай так: предположи, что у него 4, скажи ему удвоить их число, и получишь 8, затем добавить 5 и получишь 13, затем умножить всё на 5 и получишь 65, добавить 10 и получишь 75, затем умножить на 10 и получишь 750. Теперь вычти 350 и получишь 400, что соответствует 4, и каждая сотня соответствует числу, посему 400 будет 4».

* * *

Простые и десятичные дроби

Когда арабские цифры попали на Запад, изначально с их помощью записывались только целые числа. Дробные числа по-прежнему записывались в шестидесятеричной системе счисления, как в древней Вавилонии. Кушьяр ибн Лаббан в своей книге «О началах индийской арифметики» обозначает дробные числа как градусы: 1/60 он называет минутой (daqa’iq), 1/(602) — секундой (thawani), 1/(603) — терцией (thawalith), 1/(604) — квартой (rawabf) и так далее. Уже тогда они обозначались теми же символами, которые используются и сейчас: градусы обозначались знаком °, минуты — ', секунды — ", терции — "' так далее.

Лишь в XVI веке Симон Стевин написал трактат, в котором подчеркивалась важность десятичной нотации, в том числе для записи дробей. Он обратился к властям и начал кампанию по распространению этой системы. До Стевина десятичная нотация уже применялась для записи дробей, однако использовалась не повсеместно. Персидский математик и астроном Гияс ад-Дин ал-Каши (1380–1429), один из руководителей Самаркандской обсерватории, использовал эту нотацию за 100 лет до Стевина в своих трудах по тригонометрии и при вычислении числа 71. Ал-Каши также был известен так называемый треугольник Паскаля (таблица Тартальи).

* * *

СИМОН СТЕВИН

Фламандский математик, инженер, физик и семиолог Симон Стевин (1548–1620) в 1585 году опубликовал книгу DeThiende («Десятая»). В этой книге объяснялась десятичная нотация и способы вычисления расчетов в этой нотации. Стевин первым признал существование отрицательных чисел, полученных им при решении задач. Он также создал алгоритм нахождения наибольшего общего делителя двух многочленов. Он писал все труды на голландском языке, чтобы их могли понять ремесленники. Его книги были написаны очень просто и пользовались большой популярностью, что способствовало распространению десятичной системы счисления.

* * *

Число π

Как мы уже упоминали, персидский математик ал-Каши занимался вычислением числа π. В то время как Цзу Чунчжи вычислил значение π, использовав правильный многоугольник с 12288 = 3·212 сторонами, ал-Каши использовал многоугольник с числом сторон, равным 805306368 = 3·228, и верно вычислил 14 знаков π. Это произошло в 1430 году.

Математики ал-Каши и Людольф ван Цейлен вычислили новые, ранее неизвестные знаки числа π.

Профессор Лейденского университета Людольф ван Цейлен последовал путем ал-Каши и в 1596 году вычислил 20 верных знаков Я, использовав многоугольник с 515396075520 = 60·233 сторонами. Позднее, в 1615 году, он вычислил 35 верных знаков, использовав многоугольник с числом сторон, равным 4611686018427387904 = 262.

Метод вычисления числа Я с помощью многоугольников позволял получить точные результаты, однако многие математики считали, что существуют более эффективные алгоритмы. Они рассматривали возможность вычисления π как суммы или произведения бесконечного числа членов. Первым европейским математиком, который нашел подобное выражение, был Франсуа Виет, один из создателей современной алгебры. Тем не менее ему был неизвестен ряд, полученный Мадхавой из Сангамаграма, о котором мы упоминали в предыдущей главе. Выражение, полученное Виетом, представляло собой произведение бесконечного числа членов, в котором использовался квадратный корень из 2. Это выражение было не слишком удобно, однако оно открыло новый путь к вычислению множества знаков π.

Впервые в истории математики число π было выражено в виде произведения бесконечного числа членов. Это произведение выглядело следующим образом:

* * *

ФРАНСУА ВИЕТ (1540–1603)

Виет был адвокатом, государственным чиновником, но прежде всего авторитетным математиком, который первым стал обозначать члены уравнений буквами. Он славился блестящим умением взламывать шифры с помощью статистических методов. Ему удалось расшифровать переписку испанских агентов, что позволило французам получить преимущество в войне с Испанией. Незадолго до смерти он написал статью по криптографии, где изложил методы шифрования своего времени и алгоритмы их взлома.

Глава 3

Первые механические вычислительные машины

Появление арабских цифр ознаменовало прогресс в вычислениях и новый виток эволюции науки. В XVII веке в ходе длительного процесса значительно изменились представления о Вселенной, а также метод и сама концепция западной науки. Этот период, который часто именуется революцией в науке, открыл путь к эпохе Просвещения, начавшейся в XVIII веке. Развитие человеческой мысли происходило очень быстрыми темпами. Появлялись новые методы исчисления, которые требовали новых, более мощных, сложных и точных инструментов. Расчеты, выполняемые вручную, неизбежно становятся источником ошибок. Чтобы избежать этого, ученые стремились свести к минимуму участие человека в расчетах, что стимулировало создание механических вычислительных машин. В период, охватывающий XVII, XVIII и XIX века, были сконструированы первые механические вычислительные машины.

Перейти на страницу:

Бизенц Торра читать все книги автора по порядку

Бизенц Торра - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Том 15. От абака к цифровой революции. Алгоритмы и вычисления отзывы

Отзывы читателей о книге Том 15. От абака к цифровой революции. Алгоритмы и вычисления, автор: Бизенц Торра. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*