Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики
Прежде чем я окончательно запутаю читателя этими словесными несуразностями, позвольте мне попытаться объяснить, как действительно следует характеризовать фермионные и бозонные состояния. Правило состоит в следующем. Если |ψ) — состояние, содержащее некоторое число фермионов определенного типа, то при перестановке любых двух фермионов |ψ) должно перейти в — |ψ):
|ψ) → — |ψ)
Если состояние |ψ) содержит некоторое число бозонов определенного типа, то при перестановке любых двух бозонов |ψ) должно перейти в |ψ):
|ψ) → |ψ)
Отсюда следует, что никакие два фермиона не могут находиться в одном и том же состоянии. Действительно, если бы какие-нибудь два фермиона находились в одном и том же состоянии, то их перестановка вообще никак не сказывалась бы на полном состоянии системы, следовательно должно было бы выполняться — |ψ)=|ψ) т. е. |ψ)=0, что не допустимо для квантового состояния. Это свойство известно как принцип запрета Паули[163], а его следствия для структуры вещества имеют фундаментальный характер. Действительно, все главные составляющие вещества: электроны, протоны и нейтроны принадлежат к числу фермионов. Не будь принципа запрета, вещество бы просто сколлапсировало!
Вернемся к нашему примеру с 10 положениями и предположим теперь, что у нас есть состояние, состоящее из двух тождественных фермионов. Состояние |0)|0) исключается в силу принципа Паули (при перестановке первого множителя со вторым оно переходит в себя вместо того, чтобы переходить в себя со знаком минус). Кроме того, состояние |0)|1) также само по себе должно быть исключено, так как при перестановке множителей знак минус не появляется; но это легко можно исправить, если заменить произведение |0)|1) комбинацией
|0)|1) — |0)|1).
(Для нормировки оба члена можно было бы умножить на общий множитель 1/√2.) Это состояние правильно изменяет знак при перестановке первой частицы со второй, но теперь состояния |0)|1) и |0)|1) уже не независимы. Вместо этих двух состояний нам теперь разрешается иметь только одно состояние! Всего существует
1/2 (10 х 9) = 45
состояний такого рода — по одному на каждую неупорядоченную пару различных состояний из |0), |1)…., |9). Таким образом, для задания двухфермионного состояния в нашей системе необходимы 45 комплексных чисел. В случае трех фермионов нам требуются 3 различные позиции, и базисные состояния выглядят следующим образом
Всего таких состояний (10 х 9 х 8)/6 = 120, поэтому для задания трехфермионного состояния необходимы 120 комплексных чисел.
Для пары тождественных бозонов независимые базисные состояния бывают двоякого рода, а именно такие, как
|0)|1) + |1)|0),
и такие, как
|0)|0)
(которое теперь разрешается), что дает всего 10 х 11/2 = 55 базисных состояний. Таким образом, для задания двухбозонных состояний требуется 55 комплексных чисел. Для трех бозонов существуют базисные состояния трех различных типов и для задания каждого из них требуются (10 х 11 х 12)/6 = 220 комплексных чисел, и так далее.
Разумеется, для того, чтобы донести до читателя основные идеи, я рассматривал упрощенную ситуацию. Более реалистическое описание потребовало бы целый континуум состояний с определенным положением, но существенные идеи остаются такими же. Еще одно небольшое осложнение связано с наличием спина. Для каждой частицы со спином 1/2 (такая частица с необходимостью является фермионом) в каждом положении существовало бы 2 возможных состояния. Обозначим их «↑» (спин «вверх») и «↓» (спин «вниз»). Тогда в рассматриваемой нами упрощенной ситуации мы получаем не 10, а 20 базисных состояний
а в остальном рассуждать следует так же, как было сделано только что (таким образом, для двух таких фермионов необходимо взять (20 х 19)/2 = 190 чисел, для трех — (20 х 19 х 18)/6 = 1140 и т. д.).
В главе 1 я упоминал о том, что согласно современной теории, если частицу из тела человека поменять местами с аналогичной частицей из кирпича в стене его жилища, то ничего не произойдет. Если бы эта частица была бозоном, то, как мы знаем, состояние |ψ) действительно осталось бы совершенно не изменившимся. Если бы эта частица была фермионом, то состояние |ψ) в результате обмена частиц перешло бы в — |ψ) физически тождественное состоянию |ψ). (В случае необходимости изменение знака можно устранить с помощью простой меры предосторожности, а именно: при замене одной частицы на другую, повернуть одну из двух частиц на 360° вокруг ее оси. Напомним, что фермионы изменяют знак при таком повороте, а состояние бозонов остается неизменным!) Современная теория (существующая примерно с 1926 года) действительно сообщает нам нечто глубокое относительно индивидуального тождества мельчайших «кирпичиков» физической материи. Строго говоря, мы не можем говорить об «этом конкретном электроне» или об «индивидуальном фотоне». Утверждать, что «первый электрон находится здесь, а второй — там», означает утверждать, что состояние имеет вид |0)|1), что, как мы уже знаем, недопустимо, если речь идет о фермионном состоянии! Однако вполне допустимо утверждение о том, что «существует пара электронов, один из которых находится здесь, а другой — там». Вполне «законно» говорить о множестве всех электронов или всех протонов, или всех фотонов (хотя даже такое утверждение игнорирует взаимодействия между различными типами частиц). Индивидуальные электроны являются неким приближением такой полной картине, как, впрочем, и индивидуальные протоны или индивидуальные фотоны. Для большинства целей этого приближения вполне достаточно, но существуют различные ситуации, при которых оно не срабатывает — убедительными контрпримерами могут служить сверхпроводимость, сверхтекучесть и излучение лазера.
Картина физического мира, которую представила нам квантовая механика, — совсем не то, к чему мы привыкли в классической физике. Но придержите вашу шляпу — в квантовом мире есть гораздо более странные вещи!
«Парадокс» Эйнштейна, Подольского и Розена
Как упоминалось в начале этой главы, некоторые из идей Альберта Эйнштейна сыграли фундаментальную роль в развитии квантовой теории. Напомним, что именно Эйнштейн впервые ввел еще в 1905 году понятие «фотон» — квант электромагнитного поля — из этого понятия впоследствии выросла идея дуализма волна-частица. (Эйнштейну отчасти принадлежит и понятие «бозон», как и многие другие идеи, сыгравшие центральную роль в квантовой теории поля.) Тем не менее Эйнштейн так и не смог принять теорию, в которую впоследствии развились эти идеи, полагая, что такая теория не может быть описанием физического мира. Хорошо известно отвращение, которое Эйнштейн питал к вероятностному аспекту квантовой теории, и которое он в сжатой форме сформулировал в одном из писем к Максу Борну в 1926 году (письмо цитируется в книге: Пайс [1982], с. 443):
«Квантовая механика производит очень внушительное впечатление. Но внутренний голос говорит мне, что это еще не настоящая „вещь“. Квантовая теория дает очень многое, но вряд ли способна приблизить нас к разгадке секрета Старика. Я глубоко убежден, что Он не играет в кости».