Kniga-Online.club
» » » » Ричард Фейнман - 9. Квантовая механика II

Ричард Фейнман - 9. Квантовая механика II

Читать бесплатно Ричард Фейнман - 9. Квантовая механика II. Жанр: Физика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

В такой модели каждый электрон ведет себя как независи­мая частица. Угловые зависимости его волновой функции бу­дут попросту такими же, какие были у атома водорода. Это будут те же s-состояния, р-состояния и т. п., и у них будут раз­личные значения т. Раз V(r)больше не следует закону 1/r, то радиальная часть волновых функций слегка перекраивается, но качественно останется прежней, так что по-прежнему будет существовать радиальное квантовое число п. Энергии состоя­ний тоже станут немного иными.

Н

Что же при таких представлениях у нас получится с водо­родом? У основного состояния водорода l=m=n=1; мы говорим, что у него электронная конфигурация 1s. Энергия равна -13,6 эв. Это значит, что для отрыва электрона от атома нужно 13,6 эв энергии. Ее называют «энергией ионизации», W1. Большая энергия ионизации означает, что оторвать элект­рон трудно, но водород может отнять электрон у другого атома, а потому он химически активен.

Не

Теперь обратимся к гелию. Оба электрона в гелии могут находиться в одном и том же нижнем состоянии (только у одного спин направлен вверх, у другого — вниз). В своем наинизшем состоянии электрон движется в поле с потенциалом, который при малых r походит на кулонов потенциал с Z=2, а при больших r — на кулонов потенциал с Z=1. В результате возникает «водородоподобное» 1s-состояние с несколько более низкой энер­гией. Оба электрона занимают одни и те же 1s-состояния (l=0, m=0). Наблюдаемая энергия ионизации (требуемая на отрыв одного электрона) равна 24,6 эв. Поскольку теперь «оболочка» 1s заполнена (больше двух электронов в нее не втиснешь), то практически не возникает тенденции уводить у других атомов электроны. Гелий химически инертен.

Li

Ядро лития имеет заряд 3. Состояния электрона опять бу­дут водородоподобны, и тройка электронов займет три нижних уровня энергии. Два по­падут в состояния 1s, a третий пойдет в состояние n=2. Но вот с l=0 или с l=1? В водороде у этих состояний энергия одна и та же, в других же атомах это не так, и вот по какой причине. Вспомним, что у 2s-состояния есть неко­торая амплитуда того, что оно окажется вблизи ядра, а у 2р такой амплитуды нет. Это означает, что 2s-электрон как-то ощутит тройной электрический заряд ядра Li, а 2р-электрон останется там, где поле выглядит как кулоново поле единичного заряда. Добавочное притя­жение понизит энергию 2s-состояния по сравнению с энер­гией 2р-состояния. Уровни энергии примерно окажутся такими, как показано на фиг. 17.8 (сравните с соответствующей диаграм­мой на фиг. 17.7 для водорода).

Поскольку разные l-состояния обладают разными энергиями, то каждое значение l отвечает некоторой подоболочке из 2(2l+1) возможных состояний (с различными т и различными направле­ниями спина). У всех у них энергия одинакова с точностью до некоторых слабых эффектов, которыми мы пренебрежем.

Фиг. 17.8. Схематическая диаграмма уровней анергии атомного электрона в присут­ствии других электронов. Масштаб иной, нежели па фиг. 17.7.

Значит, в атоме лития два элект­рона будут в 1s-состояниях, а один — в 2s-состоянии. Поскольку электрон в 2s-состоянии обладает более высокой энергией, чем электрон в 1s-состоянии, то его сравнительно легко удалить. Ионизационная энергия лития всего 5,4 эв, и он весьма активен химически.

Так постепенно перед вами развертывается вся картина; в табл. 17.2 мы привели список первых 36 элементов, отметив состояния, занимаемые электронами в основном состоянии каж­дого атома. Таблица дает энергию ионизации для наиболее слабо связанного электрона и количество электронов, занимающих каждую «оболочку», т. е. состояние с одним и тем же п.

Таблица 17.2 · ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ ПЕРВЫХ

36 ЭЛЕМЕНТОВ (число электронов в разных состояниях)

Поскольку разные l-состояния обладают разными энергиями, то каждое значение l отвечает некоторой подоболочке из 2(2l+1) возможных состояний (с различными m и различными направле­ниями спина). У всех у них энергия одинакова с точностью до некоторых слабых эффектов, которыми мы пренебрежем.

Бериллий похож на литий, только у него в 2s-состоянии на­ходятся два электрона, а в заполненной 1s-оболочке тоже два.

От В до Ne

У бора 5 электронов. Пятый должен уйти в 2p-состояние. Всего бывает 2x3 = 6 разных 2p-состояний, поэтому можно продолжать добавлять по электрону, пока не дойдем до 8. Так мы доберемся до неона. Добавляя эти электроны, мы уве­личиваем также Z, поэтому все электронное распределение все теснее и теснее стягивается к ядру и энергия 2p-состояний все снижается и снижается, К тому времени, когда мы достигнем неона, энергия ионизации возрастет до 21,6 эв. Неон легко своего электрона не отдает. У него к тому же больше нет пустых мест на орбите, которые можно заполнить, так что и чужие электроны ему не нужны. Стало быть, неон химически инертен. У фтора есть пустое место, попав на которое, электрон может оказаться в состоянии с низкой энергией, поэтому в химиче­ских реакциях фтор очень активен.

От Na до Ar

В натрии одиннадцатый электрон вынужден начать новую оболочку, переходя в 3s-состояние. Уровень энергии этого состояния намного выше; энергия ионизации резко спадает; натрий химически очень активен. От натрия до аргона s- и p-состояния с n=3 заполняются в той же последовательности, как от лития до неона. Угловые конфигурации электронов во внешней незаполненной оболочке идут в той же последователь­ности, и прогрессирующий рост энергии ионизации тоже весьма схож с тем, что было раньше. Вы теперь понимаете, почему хи­мические свойства с ростом атомного числа повторяются. Хи­мическое действие магния очень похоже на бериллий, кремния — на углерод, хлора — на фтор. Аргон, подобно неону, инертен. Быть может, вы уже обратили внимание на то, что в последо­вательности энергий ионизации от лития до неона есть неболь­шая особенность, и такая же особенность наблюдается между натрием и аргоном. Последний электрон прикреплен к атому кислорода чуть слабее, чем можно было ожидать. Тем же са­мым отличается сера. Отчего бы это? Это можно понять, если чуть внимательнее вдуматься в эффекты взаимодействия между электронами. Подумаем о том, что бывает, когда мы помещаем в атом бора первый 2p-электрон. Он имеет шесть возможностей — три возможных р-состояния, в каждом по два спина.

Представим, что электрон со спином вверх попадает в состоя­ние с m=0, которое мы также будем называть «z»-состоянием, потому что оно облегает ось z. Ну, а что произойдет в углероде? Теперь уже 2p-электронов два. Если один из них попал в «z»-состояние, то куда попадет второй? Ниже всего его энергия будет тогда, когда он расположится подальше от первого элект­рона. Этого можно достичь, попав, скажем, в «x»-состояние 2p-оболочки. (Это состояние, как вы помните,— просто линей­ная комбинация состояний с m= +1и с m=-1.) Дальше, когда мы перейдем к азоту, то у тройки 2p-электронов наимень­шая энергия взаимного отталкивания будет тогда, когда один из них попадет в «x»-конфигурацию, другой — в «у», третий — в «z». Весь этот хоровод, однако, для кислорода не проходит. Четвертому электрону уже ничего не остается, как попасть в одно из заполненных состояний, держа при этом спин вниз. Тот элект­рон, который уже находится в этом состоянии, начнет его силь­но отталкивать, так что его энергия не будет такой низкой, ка­кой она была бы в противном случае, поэтому его легче будет удалить. Этим и объясняется разрыв в последовательности энер­гий связи, который появляется между азотом и кислородом, и между фосфором и серой.

От К до Zn

Можно было бы подумать, что за аргоном новые электроны начнут заполнять состояние 3d. Но нет! Как мы уже говорили (и иллюстрировали фиг. 17.7), состояния с высшими моментами сдвинуты по энергии вверх. К моменту, когда мы подошли к 3d-состояниям, они по энергии оказываются задвинутыми нем­ножко выше энергии 4s-состояния. Поэтому в калии последний электрон попадет в 4s-состояние. После этого в кальции оболочка заполнится (двумя электронами), а Зd-состояния начнут запол­няться у скандия, титана и ванадия.

Перейти на страницу:

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


9. Квантовая механика II отзывы

Отзывы читателей о книге 9. Квантовая механика II, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*