Ричард Фейнман - 9. Квантовая механика II
на п.
Окончательный итог таков: при любом l имеется набор возможных решений, которые мы обозначим Fn,l, где n>l+1. Каждое решение обладает энергией
Волновая функция состояния с такой энергией и с угловыми квантовыми числами l и m имеет вид
где
Коэффициенты ak получаются из (17.50). Наконец-то в наших руках полное описание состояний атома водорода.
§ 5. Волновые функции водорода
Посмотрим же, что мы открыли. Состояния, которые удовлетворяют уравнению Шредингера для электрона в кулоновом поле, характеризуются тремя (причем целыми) квантовыми числами n, l, m. Угловое распределение амплитуды электрона может обладать только определенными формами, которые мы обозначим Yl,m. Они нумеруются числом l — квантовым числом полного момента количества движения я т — «магнитным» квантовым числом, которое может меняться от -l до +l. При каждой угловой конфигурации возможны различные радиальные распределения Fn,l(r) амплитуды электрона; они нумеруются главным квантовым числом n, которое может меняться от l+1 до Ґ. Энергия состояния зависит только от n и растет с n. Состояние наинизшей энергии, или основное, является s-состоянием. У него l=0, n=1 и m=0. Это «невырожденное» состояние: имеется только одно состояние с такой энергией, а волновая функция у него сферически симметрична. Амплитуда того, что электрон обнаружится, достигает максимума в центре и монотонно спадает с удалением от центра. Эту электронную амплитуду можно изобразить этаким комочком (фиг. 17.6,а).
Фиг. 17.6. Наброски, отражающие общий характер волновых функций водорода.
В заштрихованных местах амплитуды велики. Знаки плюс и минус — это относительные знаки амплитуд в каждой области.
Имеются и другие s-состояния, с большими энергиями; у них n=2, 3, 4, ... и l=0. Каждой энергии соответствует только одно состояние m=0, и все они сферически симметричны. Амплитуды этих состояний с ростом r один или несколько раз меняют знак. Имеется n-1 сферических узловых поверхностей, или мест, где y проходит через нуль. Например, 2s-состояние (l=0, n=2) выглядит так, как показано на фиг. 17.6, б. (Темные области указывают те места, где амплитуда велика, а знаки плюс и минус отмечают относительные фазы амплитуды.) Уровни энергии s-состояний показаны в первом столбце фиг. 17.7.
Фиг. 17.7. Диаграмма уровней энергии водорода.
Затем бывают р-состояния с l=1. Для каждого n (n равно или больше 2) существует тройка состояний с одинаковой энергией, одно с m=+1, другое с m=0, третье с m=-1. Уровни энергии отмечены на фиг. 17.7. Угловые зависимости этих состояний приведены в табл. 17.1. Так, при m=0, если амплитуда положительна для углов q, близких к нулю, то при углах q, близких к 180°, она окажется отрицательной. Имеется узловая плоскость, совпадающая с плоскостью ху. При n>1 бывают также конические узловые поверхности. Амплитуда n=2, m=0 намечена на фиг. 17.6,в, а волновая функция n=3, m=0 — на фиг. 17.6, г.
Могло бы показаться, что поскольку т дает, так сказать, «ориентацию» в пространстве, то должны наблюдаться еще такие же распределения, но с пиками вдоль оси х или вдоль оси у. Можно подумать, что это скорее всего состояния с m=+1 и с m=-1. Однако это не так! Но зато раз у нас есть тройка состояний с одинаковыми энергиями, то любая линейная комбинация из этой тройки тоже будет стационарным состоянием с той же энергией. Оказывается, что «x»-состояние (по аналогии с «z»-состоянием, или состоянием с m=0, см. фиг. 17.6, в) это линейная комбинация состояний с m=+1' и с m=-1. Другая комбинация дает «y»-состояние. Точнее, имеется в виду, что состояния
если отнести их к своим осям, выглядят одинаково.
У d-состояний (l=2) для каждой энергии есть пять возможных значений т; наинизшей энергией обладает n=3. Уровни показаны на фиг. 17.7. Угловые зависимости усложняются. К примеру, состояния с m=0 обладают двумя коническими узловыми поверхностями, так что при переходе от северного полюса к южному волновая функция меняет фазы с + на — и обратно на +. Примерная форма амплитуды нарисована на фиг. 17.6,д и е для состояний с m=0 и n=3 и 4. И снова при больших n появляются конические узловые поверхности.
Мы не будем пытаться описывать другие последующие состояния. Подробное изложение волновых функций водорода вы найдете во многих книгах. Рекомендую вам особенно; L. Pauling, E.B.Wilson, Introduction to Quantum Mechanics, New York, 1935; R. B. Leightоn. Principles of Modern Physics, New York, 1959. В этих книгах вы найдете графики некоторых функций и графическое изображение многих состояний.
Хотелось бы упомянуть об одном особом свойстве волновых функций при высших l: при l>0 амплитуды обращаются в центре в нуль. Ничего в этом удивительного нет, ведь электрону трудно иметь большой момент, когда плечо момента очень мало. По этой причине чем l большe, тем дальше амплитуды «отталкиваются» от центра. Если вы посмотрите, как радиальные функции F(r) меняются при малых r, то из (17.53) окажется, что
Такая зависимость от r означает, что при больших l вам придется дальше отойти от r=0, чтобы получить заметную амплитуду. Такое поведение, кстати, определяется членом с центробежной силой в радиальном уравнении, так что все это применимо к любому потенциалу, который при малых r меняется медленнее, чем 1/r2, а таково большинство атомных потенциалов.
§ 6. Периодическая таблица
Теперь мы хотели бы применить теорию атома водорода к объяснению химической периодической таблицы элементов. В атоме элемента с атомным номером Z имеется Z электронов, которые удерживаются электрическим притяжением ядра, но при этом взаимно отталкиваются друг от друга. Чтобы получить точное решение, пришлось бы решить уравнение Шредингера для Z электронов в кулоновом поле. Для гелия уравнение имеет вид
где С21 — лапласиан, который действует на r1, координату первого электрона; С22 действует на r2, a r12=|r1-r2|. (Мы опять пренебрегаем спинами электронов.) Чтобы найти стационарные состояния и уровни энергии, следовало бы отыскать решения вида
Геометрическая зависимость заключена в f — функции шести переменных — одновременных положений двух электронов. Аналитического решения никто не знает, хотя решения для низших энергетических состояний и были найдены численными методами.
Когда электронов 3, 4 или 5, безнадежно пытаться получить точные решения. Поэтому было бы опрометчиво утверждать, что квантовая механика до конца объяснила периодическую таблицу. Но все же можно сказать, что даже с помощью довольно сомнительных приближений (и кое-какой последующей отделки) удается, по крайней мере качественно, понять многие химические свойства, проявляющиеся в периодической таблице.
Химические свойства атомов определяются в первую очередь их низшими энергетическими состояниями. Для отыскания этих состояний и их энергий мы воспользуемся следующей приближенной теорией. Во-первых, пренебрежем спином электрона, разве только что принцип запрета будет принят нами во внимание и мы будем считать, что каждое частное электронное состояние может быть занято только одним электроном. Это означает, что на одной орбите не может оказаться больше двух электронов — один со спином, направленным вверх, другой — вниз. Затем мы в первом приближении пренебрежем деталями взаимодействия электронов и будем считать, что каждый электрон движется в центральном поле, образуемом полями ядра и всех прочих электронов. Про неон, у которого 10 электронов, мы скажем, например, что каждый электрон в атоме неона испытывает влияние среднего потенциала ядра и оставшейся девятки электронов. Мы вообразим далее, что в уравнение Шредингера для каждого электрона мы подставляем V(r) — то же поле 1/r, но только видоизмененное за счет сферически симметричной плотности заряда, возникшей от остальных электронов.