Механизмы мозга - Пашнина
Все это придает нейрону большое сходство с эле-ментом электронной вычислительной машины. При определенных условиях он, несомненно, обладает особенностями поведения, напоминающими свойства электронного переключателя, применяемого в электронных вычислительных машинах. Если бы многочисленные дендритные входы нейрона были сгруппированы параллельно и соединены только с двумя или тремя источниками сигналов и если бы использовались импульсные входные сигналы определенной частоты и амплитуды (как это обычно бывает в цепях цифровых вычислительных машин), то активное или неактивное состояние нейрона определялось бы комбинацией входных сигналов. Таким путем можно было бы получить эквиваленты осуществляемых машинами логических операций типа «и», «или», «пет»; создание надлежащих обратных связей позволило бы также получить триггер и другие переключательные элементы.
Перечисленными выше свойствами нейрона должны обладать и элементы цифровой вычислительной машины общего назначения. Однако нейрону присущи и другие свойства. Повышение выходной частоты с увеличением амплитуды входного сигнала, способность складывать и вычитать входные величины, наличие временной суммации, изменчивость порога и другие свойства, слишком сложные, чтобы рассматривать их здесь,— все это указывает на то, что нейрон — значительно более хитроумное приспособление, чем электронный переключатель в вычислительной машине. Сведущий инженер, располагая такими элементами для построения информационной, вычислительной или управляющей системы, нашел бы пути использования их многообразных возможностей для упрощения своей системы и расширения круга ее функций. В последующих главах мы увидим, что такие пути находит и природа.
Входные и выходные устройства нервной системы — рецепторные и эффекторные нейроны
Электронная вычислительная машина может использовать в своей работе только свой собственный машинный язык, или код; вся необходимая для вычислений информация перед вводом ее в машину должна быть закодирована с помощью этого специфического кода, и все результаты машинных вычислений должны быть в конечном счете снова переведены в какую-то форму, в которой они могут быть использованы во внешнем мире. Природа встречается с той же задачей и решает ее тем же способом. Подобно тому как кон-структор вычислительной машины, предназначенной, скажем, для управления производственным процессом, применяет различные входные устройства, посредством которых данные о давлении, температуре, химическом составе и других важных переменных преобразуются в определенные комбинации стандартных изменений электрического напряжения (включение — выключение), так и природа использует множество различных специализированных рецепторных нейронов, преобразующих давление, температуру, химический состав и т. п. в комбинации стандартных изменений потенциала (включение — выключение), так как это единственный язык, понятный для центральной нервной системы. Точно так же преобразование выходных сигналов, т. е. результатов электронных вычислительных операций, в управляющее воз-действие, например открытие и закрытие клапанов или повышение и понижение температуры, находит себе аналогию в функции эффекторных нейронов, переводящих инструкции, полученные от мозга и закодированные в виде стандартных изменений потенциала, в надлежащие реакции мышц или желез.
Хотя подробное рассмотрение таких преобразователей не входит в нашу задачу, изобретательность природы в этой области заслуживает того, чтобы мы уделили ей некоторое внимание. На рис. 2 показаны некоторые распространенные типы нервных окончаний в организме человека. Рецептор прикосновения (рис. 2, А) состоит из волосяного фолликула и связанной с ним нервной структуры. При прикосновении к какому-либо предмету смещение наружной части волоска передается его основанию и ведет к растяжению или сжатию тончайших окончаний аксона, закрученных вокруг основания фолликула. Структура этих окончаний такова, что их механическая деформация порождает электрический потенциал, преобразуемый аксоном в стандартизированный залп импульсов — в элемент «машинного языка» нервной системы.
Тельце Мейснера (рис. 2, Б) представляет собой рецептор прикосновения иного типа, распространенный в участках наибольшей тактильной чувствительности (пальцы и губы). Механическая деформация этих окончаний осуществляется посредством смещения окружающей кожной ткани.
Тельце Пачини (рис. 2, B), похожее на луковицу, служит так называемым «рецептором давления». Увеличение сил, воздействующих на кожу, вызывает скольжение концентрических слоев этого тельца друг по другу; в результате заключенные в нем нервные
Рис. 2. Некоторые рецепторные клетки нервной системы.А — осязательные нервные окончания у основания волоска. Б — тельце Мейснера — рецептор прикосновения. В — тельце Пачини — рецептор давления. Г — обонятельный рецептор.окончания сжимаются и закручиваются таким образом, что происходит деполяризация мембраны и возникают потенциалы действия. Тельца Пачини встречаются не только под кожей, но и во внутренних органах.
Другие специализированные рецепторы воспринимают боль, тепло и холод. В каждом из них микроскопическая структура окончания рецепторного нейрона приспособлена для генерирования стандартного электрического сигнала в ответ на изменения того физического параметра, для восприятия которого предназначен данный рецептор.
Помимо рецепторных нейронов, измеряющих такие физические свойства, как давление и температура, в организме есть много рецепторов, активируемых химически. Поверхность языка и слизистой носа усеяна мельчайшими нервными окончаниями (рис. 2, Г), каждое из которых представляет собой настоящий химический анализатор, выдающий стандартный электрический сигнал при прямом соприкосновении с молекулами определенного типа.
Природа необычайно широко использует эти два основных типа нейронов (чувствительных к прикосновению и к химическим факторам) путем сочетания их с другими остроумными физическими устройствами. Например, не существует нервных клеток, непосредственно реагирующих на звуковые волны. Но природа решила, что мы должны слышать, и позаботилась о том, чтобы в нашем внутреннем ухе было приспособление, разлагающее звуковые вибрации на спектр механических смещений, которые могут регистрироваться нейронами осязательного типа. В улитке внутреннего уха имеется длинная натянутая перепонка, устроенная так, что ее различные участки приводятся в колебание под действием различных тонов. Нейроны, чувствительные к прикосновению, располагаются вдоль этой перепонки таким образом, что соединенные с ними мельчайшие волоски деформируются при местной вибрации. Общая картина возникающих при этом стандартных нервных импульсов, распространяющихся по аксонам этих рецепторов, и есть то, что мозг истолковывает как речь, симфонию или крик младенца.
Если в основе слуха лежит осязание, то в основе зрения лежит восприятие химических раздражителей. Каждый слышал о палочках и колбочках нашего глаза и знает, что это те рецепторные нервные клетки, которые каким-то путем преобразуют изображение на сетчатке в сигналы, необходимые головному мозгу для реализации