Мысли о главном. О жизни и смерти - Валерий Степанович Миловатский
Нельзя не отметить, что для формирования трёхмерной структуры ферментов и других белковых структур жизнь изобрела таких незаменимых помощников, как шапероны. Также она изобрела молекулярные насосы, молекулы-транспортники, молекулярные накопители энергии (АТФ, креатин-фосфат и т. д.), электромагнитные механизмы разного назначения, сложнейшие топологические структуры, голографические эффекты и другие конструкции…[41]
Всё это вряд ли было бы возможно без духовной организации живых тел, без высшего Божьего разума.
Дух человека изначально витает над своим зарождающимся телом. Именно он и выбирает соединяющиеся гаметы отца и матери и затем руководит процессом эмбриогенеза. И что примечательно! Дух родителей как бы «отщепляется» частично от них и опекает воплощающееся чадо. Позволю себе повториться. Собственный дух будущей личности на этом поле играет главную, решающую роль. Он соединяет отца и мать, ведёт гаметы, активизирует последующее развитие. Гений Павла Флоренского чеканно постулирует тайну этого развития: «Дух проявляется вовне, в теле, воздействует на тело. Тело – символ духа, оно есть проявление духовных состояний. Тело есть, скажу, как бы духовное состояние, наблюдаемое извне»[42].
* * *
А вот важные факты о другом феномене эмбриогенеза, касающиеся тайны появления «первичных половых клеток», т. е. самого главного в процессе продолжения рода. Речь пойдёт о том удивительном феномене, который следовало бы назвать эффектом удвоенного материнства. Именно так, ибо эти клетки – истоки будущего организма – возникают не в матери его, а в бабушке… Да, развитие будущего организма начинается издалека: всякий данный эмбриогенез как бы перекликается с предшествующим эмбриогенезом. Почему-то он нуждается в том, чтобы будущий организм начинался с яйцеклетки, отщепившейся от клеток бластулы ещё только формирующегося (его ещё нет!) материнского организма, с первых мгновений его существования. Ещё матери нет, а дитятко «запроектировано», «застолбило» себя! Получается так, что ребёнок (предполагаемый, которого ещё нет) как бы является участником предшествующего эмбриогенеза, «привязан» к нему, научается от него – действуя «назад» через поколение. Что это? Удивительная адаптационная «уловка» – взять «научение» для реализации будущего эмбриогенеза в предыдущем? (И какой «гений» естественного отбора способен на это?) О чём конкретно, собственно, речь?
Вот как приоткрывает эту тайну крупный специалист в области экспериментальной эмбриологии Элизабет Дьюкар: «мужская и женская первичные половые клетки образуются в “родительских” организмах предшествующего поколения, причём у многих животных, что, вероятно, покажется удивительным, они возникают в тот период, когда “родительский организм” сам ещё находится в зародышевом состоянии. У некоторых видов происхождение первичных половых клеток удалось проследить до очень ранних стадий, когда зародыш состоит всего из нескольких слабо дифференцированных клеток»[43].
Так у насекомых (исследования велись не только у человека) будущие половые клетки на стадии дробления утрачивают «…отдельные хромосомы. Фактически лишь у одной или двух клеток сохраняется такой же набор хромосом, каким обладала зигота. Проследовав за этими клетками с полным набором хромосом…удалось установить, что они служат стволовыми клетками, от которых берут начало первичные половые клетки (так называемого «зародышевого пути» – автор), тогда как все остальные клетки, утратившие часть хромосомного материала, превращаются в соматические»[44]. И далее Дьюкар честно признаёт: «Однако мы до сих пор ещё не знаем, какой контролирующий фактор вызывает утрату этих хромосом»[45].
Подобное происходит и у позвоночных (в том числе и у человека). Кроме того, у позвоночных отмечено, что «…в первичных половых клетках имеется цитоплазма особого рода. Эта «зародышевая плазма составляет часть цитоплазмы яйцеклетки (бабушкиной – автор), которая во время дробления попадает в первичные половые клетки»[46].
И ещё одна загадка первичных половых клеток – об удивительном их передвижении. Они «… чтобы попасть в развивающиеся гонады, мигрируют на большие расстояния…»[47]. «Каким образом, – пишет Дьюкар, – первичные половые клетки амфибий (исследования велись на амфибиях, но это относится и к высшим позвоночным – автор) находят верный путь и движутся в нужном направлении – неизвестно…»[48] Неизвестен этот «приём» и у млекопитающих[49].
В заключение рассмотренной темы должен сказать, что подобная разумность и предусмотрительность живой природы свидетельствуют о существовании некоего целесообразного плана развития организма, некоей энтелехии целостности, которые совсем не обязательно должны быть видимы и доступны манипуляциям экспериментаторов. Дьюкар честно признаёт неведомость и недоступность направляющих сил в обозначенных феноменах.
* * *
Попробуем в целом взглянуть на процесс эмбриогенеза у человека. И шире – у млекопитающих: не удастся ли нам наткнуться на истоки целостности этого процесса.
Начнём процесс с дробления зиготы, со стадии бластулы (а точнее – с морулы). Уже на этой стадии определяется пространственная ориентация будущего организма, определение так называемых осей его – переда-зада, верха-низа. Но кто дирижирует этим делом, да и вообще, синхронностью дробления? Э. Дьюкар обращает внимание на загадочные электрические импульсы: «На поздних стадиях дробления Xenopus (лягушки – автор), – замечает она, – была обнаружена передача электрических импульсов от клетки к клетке… Эти импульсы, очевидно, играют важную роль в поддержании процесса дробления, так как при обработке зародышей (морулы – автор) галотаном (вещество, вызывающее электрическое разобщение клеток) дробление прекращается»[50]. Также «…обращают на себя внимание периодические волнообразные движения, проходящие по всему зародышу перед началом каждого дробления. Эти волнообразные движения удивительно напоминают сокращение гладкого мышечного волокна в ответ на раздражение электрическим током»[51].
В то же время о каких-либо сигналах между клетками бластулы ничего не известно. Характерна видоспецифичность способов «поведения» для бластомеров разных видов. «Каждому виду, – сообщает Э. Дьюкар, – свойственны не только определённый тип дробления, но и постоянная скорость этого процесса при данной температуре»[52]. Кроме того, дробящиеся клетки «знают», какого числа бластомеров они должны достигнуть в результате дробления[53].
Всё это свидетельствует о некоем загадочном «механизме» целостного влияния на динамику развития зародыша в стадии бластулы.
За морулой и бластулой следует очень важная стадия