Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике
Общий вид функции правдоподобия:
где
– это геометрическая сумма, означающая перемножение вероятностей по всем возможным случаям внутри скобок.
Предположим, что на основании полученных данных была построена модель регрессии бинарного выбора, где результативная переменная представлена с помощью латентной переменной:
Следовательно, вероятность события, что результативная переменная yi примет значение, равное единице, можно выразить следующим образом:
Вероятность события, что результативная переменная yi примет значение, равное нулю, можно выразить следующим образом:
В связи с тем, что для вероятностей считается справедливым равенство вида:
функция правдоподобия может быть записана как геометрическая сумма вероятностей наблюдений:
Для логит-регрессии и пробит-регрессии функция правдоподобия строится через сумму натуральных логарифмов правдоподобия следующим образом:
Оценки неизвестных параметров логит-регрессии и пробит-регрессии определяются с помощью максимизации функции правдоподобия:
Для определения максимума функции l(β,X) необходимо вычислить частные производные этой функции по каждому из оцениваемых параметров и приравнять их к нулю. Результатом данной процедуры будет стационарная система уравнений:
С помощью преобразований данной системы уравнений переходим к системе нормальных уравнений, решениями которой и будут оценки максимального правдоподобия
Прежде, чем использовать пробит-регрессию и логит-регрессию для прогнозирования или анализа, необходимо проверить значимость вычисленных коэффициентов пробит и логит регрессий и моделей регрессии в целом. Подобная проверка осуществляется с помощью величины (l1-l0), где параметр l1 соответствует максимально правдоподобной оценке основной модели регрессии, а параметр l0 – оценка нулевой модели регрессии, т. е. yi=β0.
При проверке значимости коэффициентов пробит или логит-регрессии выдвигается основная гипотеза о незначимости данных коэффициентов:
H0:β1=β2=…=βk=0.
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
H1:β1≠β2≠…≠βk≠0.
Для проверки выдвинутых гипотез рассчитывается величина H=-2(l1–l0), которая распределена по χ2закону распределения с k степенями свободы.
Критическое значение χ2-критерия определяется по таблице по β2распределения в зависимости от заданного значения вероятности а и степени свободы k.
При проверке гипотез возможны следующие ситуации:
Если величина H больше критического значение χ2-критерия, т.е.
то основная гипотеза отвергается, и коэффициенты модели регрессии являются значимыми. Следовательно, модель пробит или логит-регрессии также является значимой.
Если величина H меньше критического значение β2-критерия, т. е.
то основная гипотеза принимается, и коэффициенты модели регрессии являются незначимыми. Следовательно, модель пробит или логит-регрессии также является незначимой.
Оценки неизвестных коэффициентов модели регрессии, полученные методом максимума правдоподобия, удовлетворяют следующему утверждению.
Пусть ω – это элемент, принадлежащий заданному пространству А. Если А является открытым интервалом, а функция L(ω) дифференцируема и достигает максимума в заданном интервале A, то оценки максимального правдоподобия удовлетворяют равенству вида:
Докажем данное утверждение на примере модели логит-регрессии.
Функция максимального правдоподобия для модели логит-регрессии имеет вид:
Продифференцируем полученную функцию по параметру β:
Следовательно, утверждение можно считать доказанным.
В том случае, если для модели регрессии справедливы предпосылки нормальной линейной модели регрессии, то оценки неизвестных коэффициентов, полученные с помощью метода наименьших квадратов, и оценки, полученные с помощью метода максимума правдоподобия, будут совпадать.
57. Гетероскедастичность остатков модели регрессии
Случайной ошибкой называется отклонение в линейной модели множественной регрессии:
εi=yi–β0–β1x1i–…–βmxmi
В связи с тем, что величина случайной ошибки модели регрессии является неизвестной величиной, рассчитывается выборочная оценка случайной ошибки модели регрессии по формуле:
где ei – остатки модели регрессии.
Термин гетероскедастичность в широком смысле понимается как предположение о дисперсии случайных ошибок модели регрессии.
При построении нормальной линейной модели регрессии учитываются следующие условия, касающиеся случайной ошибки модели регрессии:
6) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
7) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:
8) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю):
Второе условие
означает гомоскедастичность (homoscedasticity – однородный разброс) дисперсий случайных ошибок модели регрессии.
Под гомоскедастичностью понимается предположение о том, что дисперсия случайной ошибки βi является известной постоянной величиной для всех наблюдений.
Но на практике предположение о гомоскедастичности случайной ошибки βi или остатков модели регрессии ei выполняется не всегда.
Под гетероскедастичностью (heteroscedasticity – неоднородный разброс) понимается предположение о том, что дисперсии случайных ошибок являются разными величинами для всех наблюдений, что означает нарушение второго условия нормальной линейной модели множественной регрессии:
Гетероскедастичность можно записать через ковариационную матрицу случайных ошибок модели регрессии:
Тогда можно утверждать, что случайная ошибка модели регрессии βi подчиняется нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2Ω:
εi~N(0; G2Ω),
где Ω – матрица ковариаций случайной ошибки.
Если дисперсии случайных ошибок
модели регрессии известны заранее, то проблема гетероскедастичности легко устраняется. Однако в большинстве случаев неизвестными являются не только дисперсии случайных ошибок, но и сама функция регрессионной зависимости y=f(x), которую предстоит построить и оценить.
Для обнаружения гетероскедастичности остатков модели регрессии необходимо провести их анализ. При этом проверяются следующие гипотезы.
Основная гипотеза H0 предполагает постоянство дисперсий случайных ошибок модели регрессии, т. е. присутствие в модели условия гомоскедастичности:
Альтернативная гипотеза H1 предполагает непостоянство дисперсиий случайных ошибок в различных наблюдениях, т. е. присутствие в модели условия гетероскедастичности:
Гетероскедастичность остатков модели регрессии может привести к негативным последствиям:
1) оценки неизвестных коэффициентов нормальной линейной модели регрессии являются несмещёнными и состоятельными, но при этом теряется свойство эффективности;
2) существует большая вероятность того, что оценки стандартных ошибок коэффициентов модели регрессии будут рассчитаны неверно, что конечном итоге может привести к утверждению неверной гипотезы о значимости коэффициентов регрессии и значимости модели регрессии в целом.
58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
Существует несколько тестов на обнаружение гетероскедастичности остатков модели регрессии.
Рассмотрим применение теста Глейзера на примере линейной модели парной регрессии.
Предположим, что на основе проведённого исследования зависимость между переменными можно аппроксимировать линейной моделью парной регрессии вида:
yi=β0+β1xi.
Неизвестные коэффициенты β0и β1линейной модели парной регрессии определяются с помощью метода наименьших квадратов. В результате мы получим оценённую модель регрессии вида: