Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике
Парный коэффициент детерминации может быть рассчитан через теорему о о разложении сумм квадратов результативной переменной по следующим формулам:
или
25. Точечный и интервальный прогнозы для модели парной регрессии
Одна из задач эконометрического моделирования заключается в прогнозировании поведения исследуемого явления или процесса в будущем. В большинстве случаев данная задача решается на основе регрессионных моделей, с помощью которых можно спрогнозировать поведение результативной переменной в зависимости от поведения факторных переменных.
Рассмотрим подробнее процесс прогнозирования для линейной модели парной регрессии.
Точечный прогноз результативной переменной у на основе линейной модели парной регрессии при заданном значении факторной переменной хm будет осуществляться по формуле:
ym=β0+β1xm+εm.
Точечный прогноз результативной переменной ym с доверительной вероятностью γ или (1–а) попадает в интервал прогноза, определяемый как:
ym–t*ω(m)≤ ym≤ ym+t*ω(m),
t – t-критерий Стьюдента, который определяется в зависимости от заданного уровня значимости a и числа степеней свободы (n-2) для линейной модели парной регрессии;
ω(m) – величина ошибки прогноза в точке m.
Для линейной модели парной регрессии величина ошибки прогноза определяется по формуле:
где S2(ε) – несмещённая оценка дисперсии случайной ошибки линейной модели парной регрессии.
Рассмотрим процесс определения величины ошибки прогноза β(m).
Предположим, что на основе выборочных данных была построена линейная модель парной регрессии вида:
Факторная переменная х в данной модели представлена в центрированном виде.
Задача состоит в расчёте прогноза результативной переменной у при заданном значении факторной переменной хm, т. е.
Математическое ожидание результативной переменной у в точке m рассчитывается по формуле:
Дисперсия результативной переменной у в точке m рассчитывается по формуле:
где D(β0) – дисперсия оценки параметра β0 линейной модели парной регрессии, которая рассчитывается по формуле:
Следовательно, точечная оценка прогноза результативной переменной у в точке m имеет нормальный закон распределения с математическим ожиданием
и дисперсией
Если в формулу дисперсии результативной переменной у в точке m вместо дисперсии G2 подставить её выборочную оценку S2, то получим доверительный интервал для прогноза результативной переменной у при заданном значении факторной переменной хm:
где выборочная оценка генеральной дисперсии S2 для линейной модели парной регрессии рассчитывается по формуле:
В этом случае прогнозный интервал можно преобразовать к виду:
что и требовалось доказать.
26. Линейная модель множественной регрессии
Построение модели множественной регрессии является одним из методов характеристики аналитической формы связи между зависимой (результативной) переменной и несколькими независимыми (факторными) переменными.
Модель множественной регрессии строится в том случае, если коэффициент множественной корреляции показал наличие связи между исследуемыми переменными.
Общий вид линейной модели множественной регрессии:
yi=β0+β1x1i+…+βmxmi+εi,
где yi – значение i-ой результативной переменной,
x1i…xmi – значения факторных переменных;
β0…βm – неизвестные коэффициенты модели множественной регрессии;
εi – случайные ошибки модели множественной регрессии.
При построении нормальной линейной модели множественной регрессии учитываются пять условий:
1) факторные переменные x1i…xmi – неслучайные или детерминированные величины, которые не зависят от распределения случайной ошибки модели регрессии βi;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:
4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т.е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю):
Это условие выполняется в том случае, если исходные данные не являются временными рядами;
5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: εi~N(0, G2).
Общий вид нормальной линейной модели парной регрессии в матричной форме:
Y=X* β+ε,
Где
– случайный вектор-столбец значений результативной переменной размерности (n*1);
– матрица значений факторной переменной размерности (n*(m+1)). Первый столбец является единичным, потому что в модели регрессии коэффициент β0 умножается на единицу;
– вектор-столбец неизвестных коэффициентов модели регрессии размерности ((m+1)*1);
– случайный вектор-столбец ошибок модели регрессии размерности (n*1).
Включение в линейную модель множественной регрессии случайного вектора-столбца ошибок модели обусловлено тем, что практически невозможно оценить связь между переменными со 100-процентной точностью.
Условия построения нормальной линейной модели множественной регрессии, записанные в матричной форме:
1) факторные переменные x1j…xmj – неслучайные или детерминированные величины, которые не зависят от распределения случайной ошибки модели регрессии εi. В терминах матричной записи Х называется детерминированной матрицей ранга (k+1), т.е. столбцы матрицы X линейно независимы между собой и ранг матрицы Х равен m+1<n;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
3) предположения о том, что дисперсия случайной ошибки модели регрессии является постоянной для всех наблюдений и ковариация случайных ошибок любых двух разных наблюдений равна нулю, записываются с помощью ковариационной матрицы случайных ошибок нормальной линейной модели множественной регрессии:
где
G2 – дисперсия случайной ошибки модели регрессии ε;
In – единичная матрица размерности (n*n).
4) случайная ошибка модели регрессии ε является независимой и независящей от матрицы Х случайной величиной, подчиняющейся многомерному нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: ε→N(0;G2In.
В нормальную линейную модель множественной регрессии должны входить факторные переменные, удовлетворяющие следующим условиям:
1) данные переменные должны быть количественно измеримыми;
2) каждая факторная переменная должна достаточно тесно коррелировать с результативной переменной;
3) факторные переменные не должны сильно коррелировать друг с другом или находиться в строгой функциональной зависимости.
27. Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера
В общем виде линейную модель множественной регрессии можно записать следующим образом:
yi=β0+β1x1i+…+βmxmi+εi,
где yi – значение i-ой результативной переменной,
x1i…xmi – значения факторных переменных;
β0…βm – неизвестные коэффициенты модели множественной регрессии;
εi – случайные ошибки модели множественной регрессии.
В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). Суть метода наименьших квадратов состоит в том, чтобы найти такой вектор β оценок неизвестных коэффициентов модели, при которых сумма квадратов отклонений (остатков) наблюдаемых значений зависимой переменной у от расчётных значений ỹ (рассчитанных на основании построенной модели регрессии) была бы минимальной.
Матричная форма функционала F метода наименьших квадратов:
где
– случайный вектор-столбец значений результативной переменной размерности (n*1);