БСЭ БСЭ - Большая Советская Энциклопедия (УЛ)
Исторический опыт 20 в., две мировые войны, развязанные империализмом, победа социализма в России, а затем и в ряде др. стран, образование и быстрое развитие мировой социалистической системы в условиях, когда империалистический мир всё ещё крайне далёк от «всемирного картеля»,— свидетельство несостоятельности «У.» т.
Современная буржуазная политэкономия широко использует положение «У.» т. о «новой стадии», якобы последовавшей за эпохой империализма. Она изображается как результат самоликвидации капитализма и перехода к некоему «индустриальному», «постиндустриальному», «супериндустриальному» и так называемому некапиталистическому, но и несоциалистическому обществу. И в современных условиях «У.» т. служит интересам империалистической реакции, направлена против революционного рабочего движения.
Лит.: Ленин В. И., Крах II Интернационала, Полн. собр. соч., 5 изд., т. 26; его же, О лозунге Соединенных Штатов Европы, там же; его же, Оппортунизм и крах II Интернационала, там же, т. 27; его же, Империализм, как высшая стадия капитализма, там же, т. 27; его же, Тетради по империализму, там же, т. 28; его же, Империализм и раскол социализма, там же, т. 30; Каутский К., Империализм, Хар., [1912]; его же, Национальное государство, империалистическое государство и союз государств, М., 1917; Гильфердинг Р., Финансовый капитал, пер. с нем., М., 1959; Шишков Ю., Теория «ультраимпериализма» и современность, «Мировая экономика и международные отношения», 1967, № 4.
В. С. Афанасьев.
Ультракороткие волны
Ультракоро'ткие во'лны, диапазон радиоволн , охватывающий метровые волны и дециметровые волны .
Ультракоротковолновая терапия
Ультракоротково'лновая терапи'я, ультравысокочастотная терапия, УКВ-терапия, УВЧ-терапия, применение в лечебных целях переменного электромагнитного поля с частотой колебаний в диапазоне 30—300 Мгц (условно определяемом как УКВ и УВЧ); один из методов электролечения . В УВЧ-терапии действующий фактор — электрическая составляющая электромагнитного поля. В основе его лечебного действия лежит влияние на электрически заряженные частицы тканей организма, обусловливающее тепловой и так называемый осцилляторный (специфический) эффекты. Особенностью теплового действия является селективность — локальный нагрев внутренних органов преимущественно за счёт выделения теплоты в тканях с низкой электропроводностью . Специфический эффект заключается в динамических перестройках во внутренних структурах водных и белковых молекул, что ведёт к изменению функционального состояния и активности обменнотрофических процессов в тканях. Применение электрического поля не в непрерывном, а в импульсном режиме позволяет ограничить нежелательный тепловой и максимально усилить специфический эффект. УВЧ-терапию проводят преимущественно в виде местных процедур с помощью двух электродов, оставляя между ними и поверхностью тела воздушный зазор; её назначают в виде курса процедур (3—10) продолжительностью 8—10 мин каждая. Для УВЧ-терапии характерно противовоспалительное, рассасывающее, антиспастическое и обезболивающее действие. Применяют при острых и подострых воспалительных процессах во внутренних органах, гнойных процессах в костях (остеомиелит ) и мягких тканях (панариций , фурункул , карбункул ), воспалительных заболеваниях периферической нервной системы, суставов, лимфатических узлов; применение УВЧ-терапии в импульсном режиме эффективно при гипертонической болезни 1-й и 2-й стадий и др. Противопоказания: злокачественные новообразования, активная фаза туберкулёза, системные заболевания крови, сердечная недостаточность, гипотоническая болезнь, наклонность к кровотечениям.
В. М. Стругацкий.
Ультраметаморфизм
Ультраметаморфи'зм (от ультра... и греч. metamorphо'ornai — подвергаюсь превращению, преображаюсь), региональный метаморфизм горных пород в глубинных зонах земной коры, сопровождающийся развитием мигматитов . В результате У. метаморфические породы (гнейсы, пироксен-плагиоклазовые сланцы, амфиболиты) подвергаются повторному, часто регрессивному, метаморфизму, связанному с их гранитизацией , при температуре 650—800 °С и литостатическом давлении 4—10 кбар (0,4—1 Гн/м2 ); при этом пироксены замещаются роговой обманкой, роговая обманка — биотитом, плагиоклаз — калиевым полевым шпатом и кварцем. В результате существенно изменяется общий химический состав пород (привносятся К, Si, а также Rb, Zr, La, Ce; выносятся Na, Li, Cr, Ni, Co, Zn, Ti, V, Mo, Y, Au). Гранитизация пород при У., ведущая к образованию мигматитов, выражается в развитии анатексиса и широкого замещения их кислой магмой, насыщенной летучими компонентами, вдоль слоистости, сланцеватости, трещинных и брекчиевых зон. Зоны У.— области глубинной генерации гранитной магмы, которая обогащается летучими компонентами и приобретает способность проникать в толщи метаморфических пород. У. свойствен орогенической стадии развития геосинклинальных подвижных зон. Термин предложен шведским геологом П. Хольмквистом (1909).
Лит.: Маракушев А. А., Петрология метаморфических горных пород, М., 1973.
А. А. Маракушев.
Ультрамикроскоп
Ультрамикроско'п (от ультра... и микроскоп ), оптический прибор для обнаружения мельчайших частиц, размеры которых меньше предела разрешения (см. Разрешающая способность оптических приборов) обычных световых микроскопов. Возможность обнаружения таких частиц с помощью У. обусловлена дифракцией света на них. При сильном боковом освещении каждая частица в У. отмечается наблюдателем как светящееся дифракционное пятнышко (яркая точка) на тёмном фоне. В процессе дифракции на мельчайших частицах рассеивается очень мало света. Поэтому с У. применяют, как правило, чрезвычайно сильные источники света. Минимальные размеры обнаруживаемых частиц зависят от интенсивности освещения и достигают 2×10-9 м. По дифракционным пятнышкам нельзя определить истинные размеры, форму и структуру частиц: У. не даёт изображений оптических исследуемых объектов. Однако, используя У., можно установить наличие и концентрацию частиц, а также изучать их движение.
У. создали в 1903 австрийские учёные Г. Зидентопф и Р. Зигмонди . В предложенной ими схеме щелевого («классического») У. (рис. , а) исследуемая система неподвижна. Кювета, содержащая изучаемое вещество, освещается через узкую прямоугольную щель, изображение которой проектируется в зону наблюдения. В окуляр наблюдательного микроскопа видны светящиеся точки (дифракционные пятна) частиц, находящихся в плоскости изображения щели. Выше и ниже освещенной зоны присутствие частиц не обнаруживается. Вместо щелевого У. для исследования коллоидных систем часто применяют обычные микроскопы с конденсорами тёмного поля [см. Микроскоп , раздел Методы освещения и наблюдения (микроскопия)].
В поточном У. (рис. , б), разработанном в 50-х гг. 20 в. советскими учёными Б. В. Дерягиным и Г. Я. Власенко, поток жидкого золя или аэрозоля направляется по трубке навстречу глазу наблюдателя. Частицы, пересекая зону освещения, регистрируются как яркие вспышки визуально или с помощью фотометрического устройства. Регулируя яркость светового потока подвижным клином фотометрическим , можно выделять для регистрации частицы, размер которых превышает заданный предел. С помощью поточного У. удаётся определять частичные концентрации золей вплоть до 1010 частиц в 1 см3 .
Различные типы У. и методы ультрамикроскопии применяют при исследованиях разнообразных дисперсных систем , а также для контроля чистоты атмосферного воздуха, технологической и питьевой воды, степени загрязнения оптически прозрачных сред посторонними включениями.
Лит.: Коузов П. А., Основы анализа дисперсного состава промышленных пылей и измельченных материалов, Л., 1974; Воюцкий С. С., Курс коллоидной химии, М., 1964; Дерягин Б. В., Власенко Г. Я., Поточная ультрамикроскопия, «Природа», 1953, № 11.
Л. А. Шиц.
Принципиальные схемы щелевого (а) и поточного (б) ультрамикроскопов: 1 — источник света; 2 — конденсатор; 3 — оптическая щель; 4 — осветительный объектив; 5 — кювета; 6 — наблюдательный микроскоп; 7 — фотометрический клин.