Kniga-Online.club
» » » » БСЭ БСЭ - Большая Советская Энциклопедия (РЕ)

БСЭ БСЭ - Большая Советская Энциклопедия (РЕ)

Читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (РЕ). Жанр: Энциклопедии издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

  Лит.: Уманский Я. С., Рентгенография металлов и полупроводников, М., 1969; Ровинский Б. М., Лютцау В. Г., Камера-обскура для теневой рентгеновской микроскопии, «Изв. АН СССР. Сер. физическая», 1956, т. 20, № 7; Лютцау В. Г., Рентгеновская теневая микроскопия включений, неоднородности состава зерен и примесей по их границам, «Заводская лаборатория», 1959, т. 25,.№ 3; Cosslett V. Е., Nixon W. С., X-ray microscopy, Camb., 1960.

  В. Г. Лютцау.

Рис. 1. Схема фокусировки рентгеновских лучей в отражательном рентгеновском микроскопе с 2 скрещенными зеркалами: OO' — оптическая ось системы; А — объект; A' — его изображение. Увеличение O'A'/OA.

Рис. 6а. Снимки микроструктуры сплава алюминия с 5% меди, полученные с помощью оптического микроскопа. Для сравнения сняты одни и те же участки сплава. Вверху и внизу представлены снимки одинаковых по составу сплавов, кристаллизовавшихся с разной скоростью охлаждения (вверху 180 град/мин, внизу 1 град/мин). На верхнем снимке увеличение в 2,5 раза больше, чем на нижнем.

Рис. 4. Рентгеновская микрофотография среза берцовой кости человека в месте перелома (по прошествии 28 дней после перелома). Видно клеточное строение костной ткани — остеоны и остеоциты (белые точки). Увеличено.

Рис. 3. Образование полутени Pr и дифракционной «бахромы» в проекционном рентгеновском микроскопе.

Рис. 5. Рентгеновская микрофотография железной руды: а — силикат железа; б — магнетит. Увеличено.

Рис. 6б. Снимки микроструктуры сплава алюминия с 5% меди, полученные с помощью рентгеновского микроскопа. Для сравнения сняты одни и те же участки сплава. Вверху и внизу представлены снимки одинаковых по составу сплавов, кристаллизовавшихся с разной скоростью охлаждения (вверху 180 град/мин, внизу 1 град/мин). Рентгеновская микроскопия выявляет более тонкое строение микрозёрен сплава (микродендриты — тёмные полосы, скопления атомов меди по границам субзёрен — светлые линии). На верхнем снимке увеличение в 2,5 раза больше, чем на нижнем.

Рис. 2. Схема проекционного рентгеновского микроскопа с использованием широкофокусной рентгеновской трубки и камеры-обскуры.

Рентгеновская спектроскопия

Рентге'новская спектроскопи'я, получение рентгеновских спектров испускания и поглощения и их применение к исследованию электронной энергетической структуры атомов, молекул и твёрдых тел. К Р. с. относят также рентгено-электронную спектроскопию, т. е. спектроскопию рентгеновских фото- и оже-электронов, исследование зависимости интенсивности тормозного и характеристического спектров от напряжения на рентгеновской трубке (метод изохромат), спектроскопию потенциалов возбуждения.

  Рентгеновские спектры испускания получают либо бомбардировкой исследуемого вещества, служащего мишенью в рентгеновской трубке, ускоренными электронами (первичные спектры), либо облучением вещества первичными лучами (флуоресцентные спектры). Спектры испускания регистрируются рентгеновскими спектрометрами (см. Спектральная аппаратура рентгеновская). Их исследуют по зависимости интенсивности излучения от энергии рентгеновского фотона. Форма и положение рентгеновских спектров испускания дают сведения об энергетическом распределении плотности состояний валентных электронов, позволяют экспериментально выявить симметрию их волновых функций и их распределение между сильно связанными локализованными электронами атома и коллективизированными электронами твёрдого тела.

  Рентгеновские спектры поглощения образуются при пропускании узкого участка спектра тормозного излучения через тонкий слой исследуемого вещества. Исследуя зависимость коэффициента поглощения рентгеновского излучения веществом от энергии рентгеновских фотонов, получают сведения об энергетическом распределении плотности свободных электронных состояний. Спектральные положения границы спектра поглощения и максимумов его тонкой структуры позволяют найти кратность зарядов ионов в соединениях (её можно определить во многих случаях и по смещениям основных линий спектра испускания). Р. с. даёт возможность также установить симметрию ближнего окружения атома, исследовать природу химической связи. Рентгеновские спектры, возникающие при бомбардировке атомов мишени тяжёлыми ионами высокой энергии, дают информацию о распределении излучающих атомов по кратности внутренних ионизаций. Рентгеноэлектронная спектроскопия находит применение для определения энергии внутренних уровней атомов, для химического анализа и определения валентных состояний атомов в химических соединениях.

  Лит.: Блохин М. А., Физика рентгеновских лучей, М., 1957; Рентгеновские лучи, под ред. М. А. Блохина, М., 1960; Баринский Р. Л., Нефедов В. И., Рентгено-спектральное определение заряда атомов в молекулах, М., 1966; Зимкина Т. М., Фомичев В. А., Ультрамягкая рентгеновская спектроскопия, Л, 1971; Немошкаленко В. В., Рентгеновская эмиссионная спектроскопия металлов и сплавов, К., 1972; X-ray spectroscopy, ed. L. V. Azaroff, N. — Y., 1974.

  М. А. Блохин.

Рентгеновская съёмка

Рентге'новская съёмка, фотографическая или видеомагнитная регистрация теневого изображения различных объектов, получаемого при просвечивании их рентгеновскими лучами (РЛ) и отображающего внутреннее строение объектов. Р. с. применяется в медицине, биологии, физике, технике и военном деле. Объектами Р. с. могут быть внутренние органы и системы организма человека и животных, растения, промышленные изделия, детали конструкций, образцы различных веществ и пр. Р. с. осуществляют либо прямым методом, при котором светочувствительный материал экспонируется непосредственно в РЛ, проходящих сквозь снимаемый объект, либо косвенным методом, при котором изображение объекта, образованное РЛ на флуоресцирующем экране, переснимается на фотокиноплёнку или записывается на магнитную ленту.

  Рентгеновская фотосъёмка прямым методом производится на рентгеновскую плёнку (специальный вид фотоплёнки, характеризующийся очень высокой контрастностью при сравнительно высокой чувствительности к РЛ), заряженную в кассету, которая располагается за просвечиваемым объектом (см. Рентгенограмма). Для сокращения выдержки дополнительно применяют усилительные флуоресцирующие экраны, которые помещают с обеих сторон плёнки в непосредственном контакте с её эмульсионными слоями. При рентгеновской киносъёмке прямым методом, во избежание потери чёткости изображения из-за продвижения плёнки, просвечивание объекта производится лишь в период экспонирования кадра. Для этого на управляющую сетку трёхэлектродной рентгеновской трубки подаются импульсы тока от коммутатора, связанного с лентопротяжным механизмом съёмочного аппарата. В процессе съёмки плёнка перематывается с катушки на катушку и огибает на участке экспонирования покрытый флуоресцирующим слоем гладкий вращающийся барабан, который служит усиливающим экраном. Таким способом при использовании рентгеновской трубки с холодной эмиссией достигают времени экспонирования кадра 10-7 сек при частоте съёмки 100 кадров в сек.

  При Р. с. косвенным методом изображение, образованное РЛ на флуоресцирующем экране с жёлто-зелёным или зелёным свечением, снимается при помощи фото- или киноаппарата на специальную флюорографическую плёнку с высокой чувствительностью к свету жёлто-зелёной области спектра или регистрируется видеомагнитофоном. Для усиления яркости изображения используют экраны с флуоресцирующим слоем, нанесённым на металлическую пластинку и покрытым с внешней стороны тонким металлическим слоем. При подаче на металлический слой и пластинку постоянного напряжения свечение экрана усиливается приблизительно в 10 раз. Значительно большего усиления яркости достигают включением в схему рентгеновской съёмочной установки электроннооптического преобразователя изображения (ЭОП). В таких установках РЛ после прохождения сквозь объект падают на фотокатод ЭОП, а изображение, полученное на экране последнего, переснимается фото- или киноаппаратом. Просвечивание объекта при рентгеновской киносъёмке косвенным методом в простейшем случае производится непрерывно в течение всего времени съёмки. Однако в большинстве современных рентгеновских киноустановок рентгеновское излучение генерируется периодически — лишь во время экспонирования кадра. Благодаря этому интенсивность рентгеновского излучения во многих случаях (особенно в установках с ЭОП) может быть сохранена в пределах допустимых норм облучения биологических объектов. Этот вид Р. с. широко используют в медицинской рентгенодиагностике. При съёмке технических объектов, где интенсивность рентгеновского облучения не играет существенной роли, частота импульсной Р. с. может достигать 1000 кадров в сек. См. также Электрорентгенография.

Перейти на страницу:

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Большая Советская Энциклопедия (РЕ) отзывы

Отзывы читателей о книге Большая Советская Энциклопедия (РЕ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*