Петр Успенский - Tertium organum
Это не то.
Чужой -- это не свой.
Теперь оно вдруг поймет, что и чужой человек, и свой человек -- оба люди.
Как оно выразит это на своем языке представлений?
Вернее всего, что никак не будет в состоянии выразить, потому что язык представлений общих понятий выразить нельзя. У животного просто спутаются ощущения чужого человека и своего человека. Оно начнет размышлять, а размышление -- это смерть чувства.
Животное перестает ясно чувствовать те свойства, которые делали чужого чужим. Оно начинает ощущать в человеке новые свойства, которых раньше не знало. В результате у него непременно явится потребность в системе для обобщения этих новых свойств, -- потребность в новой логике, выражающей отношения нового порядка вещей. Но, не имея понятий, оно не будет в состоянии построить аксиом логики Аристотеля и выразит свое ощущение нового порядка в форме совершенно абсурдного положения:
Это есть то.
Представим себе, что животному с зачатками логики, выражающимися у него в ощущениях,
Это есть это,
То есть то,
Это не то,
говорят, что два для него совершенно разных предмета, как, например, два дома -- свой и чужой, -- одинаковы, что они представляют собой одно и то же, что они оба дома. Животное никогда не поймет этой одинаковости. Для него два дома: свой, где кормят, и чужой, где бьют, если туда зайдешь, -останутся совершенно разными. Ничего общего для него в них не будет. И стремление доказать ему одинаковость этих домов ни к чему не приведет, пока оно само не ощутит ее. Тогда, ощущая смутно идею общности двух разных предметов и не имея понятий, животное выразит это, как нечто нелогическое с своей точки зрения. Говорящее двумерное существо идею это и то -- одинаковый предмет переведет на язык своей логики в виде формулы: Это есть то -- и, конечно, скажет, что это бессмыслица, что ощущение нового порядка вещей ведет к логическому абсурду. Но иначе выразить то, что ощущает, оно не будет в состоянии.
Совершенно в таком же положении находимся мы, -- когда мы, мертвые, пробуждаемся, -- то есть когда мы, люди, переходим к ощущению другой жизни, к постижению высших сущностей.
Тот же испуг, та же потеря реального, то лее ощущение одной сплошной нелогичности. Чтобы реализовать новый мир, мы должны понять новую логичность.
* * *
Наша обычная логика помогает нам разбираться только в отношениях феноменального мира. Было очень много попыток определить, что такое логика. Но логика по существу неопределима, так же как математика.
Что такое математика? Наука о величинах. Что такое логика? Наука о понятиях. Но это не определения, а только перевод названия. Математика, или наука о величинах есть система, изучающая количественные отношения между вещами; логика, или наука о понятиях, есть система, изучающая качественные (категорические) отношения между вещами.
Логика построена совершенно по одному плану с математикой. Как логика, так и математика (по крайней мере, общеизвестная математика "конечных" и "постоянных" чисел) выведены нами из наблюдения феноменально нашего мира. Обобщая свои наблюдения, мы постепенно нашли отношения, которые мы назвали основными законами мира.
В логике эти основные законы заключены в аксиомах Аристотеля и Бэкона.
А есть А.
(Что было А, то и будет А.)
А не есть не А.
(Что было не А, то и будет не А)
Всякая вещь есть или А, или не А.
(Всякая вещь должна быть А или не А.)
Логика Аристотеля и Бэкона, разработанная и дополненная их многочисленными последователями, оперирует только с понятиями.
Слово логос, вот предмет логики. Идея, для того чтобы стать предметом логических рассуждений, для того чтобы подлежать логическим законам, должна быть выражена в слове. То, что не может быть выражено в слове, не может войти в логическую систему. И при этом слово может войти в логическую систему, подлежать логическим законам, только как понятие.
Само по себе слово может иметь еще другое значение, кроме 'обычно связанного с ним понятия, оно может иметь символическое или аллегорическое значение, может заключать в себе известную музыку или определенный эмоциональный тон. Но все это войти в логическую систему не может. Какое бы символическое, аллегорическое, музыкальное или эмоциональное значение ни имело слово, в логическое построение оно войдет только в своем логическом значении, то есть -- как понятие.
В то же время мы прекрасно знаем, что не все может быть выражено в словах. В нашей жизни и в наших чувствах очень много такого, что не укладывается в понятия. Таким образом, ясно, что даже в настоящий момент, на настоящей ступени нашего развития, далеко не все может быть для нас логическим. Есть очень много вещей вне логических по существу. Такова вся область чувства, эмоций, религии. Все искусство -- одна сплошная нелогичность. И, как мы сейчас увидим, совершенно нелогической является математика, самая точная из наук.
Если мы сравним аксиомы логики Аристотеля и Бэкона с аксиомами общеизвестной математики, то мы найдем между ними полное сходство.
Аксиомы логики
А есть А,
А не есть не А,
Всякая вещь есть или А, или не А
вполне соответствуют основным аксиомам математики, аксиомам тождества и противоречия:
Всякая величина равна самой себе.
Часть меньше целого.
Две величины, равны порознь третьей, равны между собой
и т.д.
Сходство аксиом математики и логики идет очень глубоко, и это позволяет сделать заключение об их одинаковом происхождении.
Законы математики и законы логики -- это законы отражения феноменального мира в нашем сознании.
Как аксиомы логики могут оперировать только с понятиями и относятся только к понятиям, так аксиомы математики могут оперировать только с конечными и постоянными величинами и относятся только к ним.
По отношению к бесконечным и переменным величинам эти аксиомы неверны, так же как аксиомы логики неверны по отношению к эмоциям, к символам, к музыкальности и к скрытому значению слова.
Что это значит?
Это значит, что аксиомы логики и математики выведены нами из наблюдения явлений, то есть феноменального мира, и представляют собой известную условную неправильность, нужную для познания условно неправильного мира.
* * *
Раньше было указано, что у нас, собственно, есть две математики. Одна -- математика конечных и постоянных чисел, представляет собой совершенно искусственное построение для решения задач на условных данных. Главное из этих условных данных заключается в том, что в задачах этой математики всегда берется только t Вселенной, то есть берется только один разрез Вселенной, который никогда не смешивается с другим разрезом. Таким образом, математика конечных и постоянных величин изучает искусственную Вселенную и сама по себе есть нечто, специально созданное на основании нашего наблюдения явлений и служащее для облегчения этих наблюдений. Дальше явлений математика конечных и постоянных числе пойти не может. Она имеет дело с воображаемым миром, с воображаемыми величинами.
Другая, математика бесконечных и переменных величин, представляет собою нечто совершенно реальное, построенное на основании умозаключений о реальном мире.
Первая относится к миру феноменов, который представляет собою не что иное, как наше неправильное восприятие мира.
Вторая относится к миру ноуменов, который представляет собою мир как он есть.
Первая нереальна, существует только в нашем сознании, в нашем воображении.
Вторая реальна, выражает отношения реального мира.
Примером "реальной математики", нарушающей основные аксиомы математики (и логики), являются так называемые трансфинитные числа.
Трансфинитными числами, как показывает их название, называются числа за бесконечностью.
Бесконечность, изображенная знаком ?, есть математическое выражение, с которым, как с таковым, можно производить все действия: делить, множить, возводить в степень. Бесконечность можно возвести в степень бесконечности, будет ??. Эта величина, несомненно, в бесконечное число раз больше простой бесконечности ?. И в то же время они равны. Вот это и есть самое замечательное в трансфинитных числах. Вы можете производить с ними какие угодно действия, они будут соответствующим образом изменяться, оставаясь в то же время равными ?? = ?. Это нарушает основные законы математики, принятые для конечных, финитных, чисел. Изменившись, конечное число уже не может быть равно самому себе. А здесь мы видим, как, изменяясь, трансфинитное число остается равным самому себе.
* * *
При этом трансфинитные числа совершенно реальны. Выражением ?? и далее ? = ??? мы можем найти соответствующие примеры в реальном мире.
Возьмем линию, любой отрезок линии. Мы знаем, что число точек в этой линии равно бесконечности, потому что точка измерения не имеет. Если наш отрезок равен вершку и рядом с ним мы представим себе отрезок в версту, то каждой точке в большом отрезке будет соответствовать точка в малом. Число точек в отрезке, равном вершку, бесконечно. Число точек в версте тоже бесконечно. Получается ? = ?.