Вероятности и неприятности. Математика повседневной жизни - Сергей Борисович Самойленко
Счастье — это найти друзей с тем же диагнозом, что и у тебя
А можно ли вообще ставить вопрос о соответствии какой-то норме, не пытаемся ли мы при этом оценивать и сравнивать? Вы спросите: что же в этом плохого? Мы все время кого-нибудь с кем-нибудь сравниваем, чаще всего себя с другими, но иногда позволяем себе оценить и кого-нибудь еще. Однако с точки зрения математики все не так просто. Чтобы сравнивать что-либо с чем-либо, нужно правильно определить отношение порядка или ввести метрику.
Определить отношение порядка — значит обозначить, что один элемент некоего множества в каком-то смысле предшествует другому. Этому мы научились еще в школе: 2 меньше 20, слон слабее кита, уговор дороже денег и т. п. Но вот вам ряд вопросов. Что идет раньше — понедельник или вторник? А воскресенье или понедельник? А какое воскресенье — то, что перед понедельником, или то, которое после субботы? А какое комплексное число больше: 2 + 3i или 3 + 2i? Мы можем назвать по порядку цвета радуги и даже ассоциировать все промежуточные цвета с вещественным числом — частотой света. Но кроме этих цветов существует множество неспектральных. Они образуют хорошо знакомое типографам и дизайнерам цветовое пространство, в котором каждый цвет имеет три «координаты». Так можно ли все видимые глазом цвета выстроить по порядку?
Эти примеры показывают, что с отношением порядка бывают трудности. Например, для отношения «один день недели наступает после другого» не работает свойство транзитивности (из того, что воскресенье наступает позже четверга, а четверг — позже понедельника, не следует, что воскресенье всегда наступает позже понедельника), так же как не транзитивно отношение «сильнее» в игре «камень-ножницы-бумага». Попытка ввести понятие больше / меньше на поле комплексных чисел не согласуется с арифметикой этих чисел, а цвета, которые можно параметризовать тремя «координатами» (тон, насыщенность, яркость), обладают обоими этими недостатками: и отсутствием транзитивности для тона — своеобразной «угловой» характеристики цвета, которая зациклена подобно дням недели; и существенной многомерностью. Даже на привычном нам множестве рациональных чисел отношение порядка хоть и определено, но не дает возможности указать наименьшее или наибольшее число на каком-либо открытом интервале.
Итак, мы видим, что отношение порядка вовсе не так просто, как мы привыкли думать, а главное — не универсально. Но мы все-таки можем сравнивать людей, книги, блюда, языки программирования и прочие объекты, имеющие множество параметров, пусть даже условно формализуемых? Можем, используя вместо сравнения другую концепцию — степень подобия объектов между собой, или метрику. Фильмы про Индиану Джонса ближе к «Пиратам Карибского моря», чем к комедиям Вуди Аллена или документалистике. Русский язык ближе к польскому, чем к немецкому, и совсем не похож на суахили. Числа 2+3i или 3+2i ближе друг к другу, чем к числу 100. Если мера обобщает размеры (длину, объем и т. д.), то метрика, введенная в математику Морисом Фреше в 1906 году, — это обобщение понятия «расстояние». Вот ее определение.
Пусть имеется произвольное множество X. Метрика — функция ρ, сопоставляющая любым двум элементам x и y множества вещественное число ρ(x,y) и при этом удовлетворяющая таким условиям:
1) ρ(x,y) = 0 тогда и только тогда, когда x = y (аксиома тождества: расстояние между точками равно нулю, если эти точки совпадают);
2) ρ(x,y) = ρ(y,x) (аксиома симметрии: расстояние в обе стороны одинаково);
3) ρ(x,z) ≤ ρ(x,y) + ρ(y,z) (неравенство треугольника — аналог знакомого утверждения из курса геометрии: окружной путь не может быть короче прямого).
Множество X с введенной метрикой называется метрическим пространством. Из приведенных аксиом следует, что метрика — неотрицательная функция. Рассмотрим неравенство треугольника для случая x = z:
0= ρ(x,x) ≤ ρ(x,y)+ ρ(y,x) = 2ρ(x,x), откуда ρ(x,x) ≥ 0.
Понятие метрики позволяет вводить аналог расстояния (или степени близости) в совсем неочевидных случаях, например на бесконечномерном пространстве функций, между строками текста или изображениями; наконец, между распределениями случайных величин. Введение метрики не решает всех проблем, но в отсутствие внятной и корректной метрики легко увязнуть в бесконечном, бурном и бессмысленном споре, который в околокомпьютерной среде известен как «холивар» (от англ. holy war — священная война). Увы, жаркие споры возникают чаще всего уже на этапе выбора метрик, поскольку они сами образуют некое множество, на котором тоже нужно определять отношение порядка «лучше / хуже». Впрочем, можно предложить вполне осмысленный способ рассуждений о сравнимости многомерных объектов, например людей.
В многомерном пространстве параметров каждый объект может быть представлен вектором — набором чисел, определяющих значения критериев, которые его характеризуют. Рассматривая ансамбль векторов (например, человеческое общество), мы увидим, что какие-то из них окажутся сонаправлены или по крайней мере близки по направлениям; вот их-то уже вполне можно сравнивать по длине. В то же время какие-то векторы ортогональны (в геометрическом смысле — перпендикулярны, в более широком — независимы), и соответствующие им люди попросту друг другу непонятны: они по ряду параметров в сопряженных пространствах, как пресловутые физики и лирики. Нет смысла рассуждать о том, что хороший поэт в чем-то лучше либо хуже талантливого инженера или одаренного природой спортсмена. Единственное, о чём можно судить, — о длине вектора, то есть степени одаренности, расстоянии от среднего.
В связи с этим может возникнуть любопытный вопрос: а какая доля случайных векторов в пространстве заданной размерности будет сонаправленной, а какая ортогональной? Как много удастся найти единомышленников или хотя бы тех, с кем можно себя сравнить?
В двумерном мире каждому вектору соответствует одномерное пространство коллинеарных (сонаправленных) и одномерное пространство ортогональных