Kniga-Online.club
» » » » Тунгусский и Челябинский метеориты. Научные мифологемы - Михаил Стефанович Галисламов

Тунгусский и Челябинский метеориты. Научные мифологемы - Михаил Стефанович Галисламов

Читать бесплатно Тунгусский и Челябинский метеориты. Научные мифологемы - Михаил Стефанович Галисламов. Жанр: Военное год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:
условиях наблюдается в ионосфере. В плазме одновременно взаимодействует множество частиц. Этим свойством плазма обязана действию кулоновских сил. Убыль заряженных частиц в плазме определенной температуры происходит за счет рекомбинации. Пополняется она за счет новых актов ионизации. Рекомбинация – это нейтрализация при встрече разноименных ионов или воссоединение иона с электроном с превращением последнего в нейтральную молекулу (атом). Исчезновение газоразрядной плазмы, предоставленной самой себе, называется деионизацией газа. При удалении электрического поля, приложенного к плазме, противоположно заряженные частицы газа рекомбинируют, плазменное состояние у газа исчезает.

Электрические заряды, покоящиеся относительно выбранной системы отсчета, имеют вокруг себя только электрическое поле. Действие электрического поля на заряды, между которыми существует разность потенциалов, вызывает их ток. Электрическое поле и ток, проходящий через плазму, поддерживают ее в устойчивом состоянии. Электрические заряды, которые движутся в направлении вектора силы поля, не требуют затрат энергии. Вокруг движущихся зарядов образуется магнитное поле. Магнитное поле обнаруживается по его воздействию на тела и измерительные приборы. Прекращения направленного движения зарядов возможно снятием или встречным направлением поля, при котором равнодействующая двух сил равна нулю.

В зависимости от природы электрических зарядов принято различать электронную, ионную и смешанную электрическую проводимость. Электронная электропроводность характерна для металлов, рудных тел и полупроводников. Ионная электропроводность свойственна – природным водам, водным растворам, электролитам, а также газам. Поле Земли ориентирует ионные структуры в атмосфере. Разность потенциалов вызывает движение зарядов в пространстве между ними. В окружающей среде постоянно присутствуют электромагнитные поля естественного и искусственного происхождения. Основными естественными электромагнитными полями являются атмосферное электричество, постоянное магнитное поле Земли и геомагнитные вариации. В течение последних десятилетий уровень интенсивности электромагнитного окружения значительно возрос. Основные составляющие электромагнитного загрязнения лежат в крайне низкочастотном (КНЧ: 10-300 Гц) и ультранизкочастотном (УНЧ: 0-10 Гц) диапазонах.

Поле объемного электрического заряда зависит от величины, протяженности, формы, количества, типа зарядов и прочих факторов. Между заряженными частицами плазмы действуют электростатические силы. Физика плазмы относится к проблеме многих тел, основное взаимодействие – электромагнитное, хорошо изучено. По условию, плазма нейтральна и состоит из большого числа частиц с зарядами +е и –е. Плазма отличается от скопления заряженных частиц минимальной плотностью, определяемой из условия L >> D, где L – линейный размер системы заряженных частиц. Характерное для плазмы расстояние – D, называемое дебаевским радиусом экранирования определяется выражением [13. С. 505]:

D = (kT/4πe2ne,)0,5

где T – температура электронов, градус; k = 1,380662.10–23 Дж/К – коэффициент, переводящий единицы энергии в градусы; e – заряд электрона, ne – количество заряженных частиц в плазме (дебаевское число). В объеме одной поверхности заключено равное количество положительных и отрицательных ионов. Если к плазменному объекту приложить внешнее поле, то оно проникает на глубину порядка дебаевского радиуса. Плазма называется газовой, если число частиц одного сорта велико. В термодинамическом отношении она рассматривается как идеальный газ.

Для соблюдения нейтральности плазмы необходимо, чтобы ее характерные размеры (L) были много больше дебаевского радиуса. Для разных объектов его величина изменяется в зависимости от температуры и числа ионов. Газ, у которого дебаевский радиус мал, в сравнении с линейными размерами занимаемой им области, характеризуется высокой степенью ионизации. В теории Дебая – Хюккеля ион полностью ионизированного газа принимается за точечный заряд. При этом газ считают электрически нейтральным как целое. Если через плазму в форме столба пропустить сильный электрический ток вдоль оси, то магнитное поле этого тока, имеет форму как у прямолинейного проводника. Электродинамические силы сжимают плазму. Сжатие плазмы происходить до тех пор, пока давление, вызванное электродинамическими силами, не уравновесится давлением частиц самой плазмы [92].

Плотность и температура заряженных частиц являются важными параметрами характеристики плазмы. У разных тел, в зависимости от температуры и числа ионов, изменяется величина D. У ионосферной плазмы D ≈ 10–1 см, для плазмы газового разряда D ≈ 10–3 ÷ 10–4 см, для плазмы твердых тел D ≈ 10–5 ÷ 10–7 см. Дебаевский радиус очень малая величина и соотношение L > D выполняется с большим запасом. Воздух и вода различаются по плотности только в 103 раз, а плотности воды и вещества белых карликов различаются в 105 раз. Диапазон плотностей плазмы – огромный. Различные типы газовой плазмы во всем диапазоне плотностей, различающихся на 28 порядков (от 106 до 1034 м –3) [93. С. 23]. Внешняя часть земной атмосферы представляет собой плазменную оболочку из слабо ионизованной плазмы. Когда плотность заряженных частиц в газе очень мала, а среда представляет собой не полностью ионизованный газ, то ионы взаимодействуют, в основном, с нейтральными частицами.

Тела обычно находятся в твердом, жидком и газообразном состояниях. Плазму часто называют "четвертым состоянием вещества". Коллективное взаимодействие частиц, связанное с кулоновскими силами, позволяет рассматривать плазму как особое агрегатное состояние вещества. Ее отличает: сильное взаимодействие с внешними магнитными и электрическими полями, обусловленное высокой электропроводностью плазмы; взаимодействие частиц плазмы посредством поля; наличие упругих свойств, приводящих к возможности возбуждения и распространения в плазме разнообразных колебаний и волн. Свойство большой электропроводности приближает по этому признаку плазму к проводникам. За счет актов ионизации плазменные тела растут, притягивая к себе новые заряды из окружающего пространства. В плазме также протекают процессы противоположного направления. При определенной температуре за счет рекомбинации происходит убыль заряженных частиц. Рекомбинация – это процесс нейтрализации при встрече разноименных ионов или воссоединение иона с электроном с превращением последнего в нейтральную молекулу (атом). Исчезновение ионов, по существу, является процессом, противоположным возникновению. Возникновение и исчезновение плазмы в природе – это постоянный процесс, который происходит как днем, так и ночью.

Систематическое изучение электрических токов и разрядов в газах было начато лишь в конце 19 века. Была установлена природа газовых разрядов в различных условиях. Однако, ввиду сложности этих явлений, точной количественной теории их не существует до настоящего времени. Ионизация газа, возникающая в результате вырывания электронов из молекул и атомов самого газа, называется объемной ионизацией, так как источники ионов здесь распределены в объеме, занимаемом газом. Помимо объемной ионизации существует поверхностная ионизация. При таком виде ионы, или электроны, поступают в газ со стенок сосуда, в котором он заключен, или с поверхности тел, вносимых в газ. Например, источником электронов могут служить раскаленные тела (термоэлектронная эмиссия) или поверхность металла, освещаемая ультрафиолетовым излучением (фотоэлектрический эффект).

Пламя огня и разрядный канал молнии образуют плазму в природных условиях. Искусственная плазма создается в газоразрядных лампах, при газовых разрядах. Заряженные частицы, входящие в ее состав, непрерывно находятся в ускоряющем электрическом поле. Средняя

Перейти на страницу:

Михаил Стефанович Галисламов читать все книги автора по порядку

Михаил Стефанович Галисламов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Тунгусский и Челябинский метеориты. Научные мифологемы отзывы

Отзывы читателей о книге Тунгусский и Челябинский метеориты. Научные мифологемы, автор: Михаил Стефанович Галисламов. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*