Предназначение человека. От Книги Бытия до «Происхождения видов» - Сэмюэл Уилкинсон
42
Вот как говорит об этом биолог Джордж Макги: «Эволюцию… [формы тела дельфинов] никак нельзя назвать тривиальной. Лишь слово “поразительный” не меньше подходит для того, чтобы верно судить о том, как группа сухопутных животных, четвероногих и хвостатых, смогла произвести обратную эволюцию своих конечностей и хвостов в плавники, напоминающие рыбьи. Маловероятно? Невозможно? И тем не менее это случилось дважды, конвергентно у рептилий и млекопитающих – у двух групп животных, не связанных между собой тесным родством». Здесь Макги ссылается не только на тот факт, что не одни лишь морские свиньи произошли от сухопутных животных и стали похожими на акул (предки которых никогда не выходили на сушу), но и на то, что ихтиозавры (рептилии, похожие на дельфинов и жившие в эпоху динозавров), видимо, прошли тот же эволюционный путь. George McGhee, “Convergent Evolution: A Periodic Table of Life?” in The Deep Structure of Biology, ed. Simon Conway Morris (West Conshohocken, Penn.: Templeton Press, 2008), 19.
43
Simon Conway Morris, Life’s Solution: Inevitable Humans in a Lonely Universe (Cambridge, UK: Cambridge University Press, 2003), 181.
44
Travis Park, Erich M. G. Fitzgerald, and Alistair R. Evans, “Ultrasonic Hearing and Echolocation in the Earliest Toothed Whales,” Biology Letters 12 (April 1, 2016), https://doi.org/10.1098/rsbl.2016.0060.
45
Conway Morris, Life’s Solution, 181.
46
Thomas E. Tomasi, “Echolocation by the Short-Tailed Shrew Blarina brevicauda,” Journal of Mammalogy 60, No. 4 (Nov. 20, 1979), 751–759.
47
Katherine J. Wu, “Spider Silk is Stronger Than Steel. It Also Assembles Itself,” New York Times, Nov. 4, 2020, https://www.nytimes.com/2020/11/04/science/spider-silk-web-self-assembly.html. Дата обращения: 22.09.2021.
48
Tara D. Sutherland, James H. Young, Sarah Weisman, Cheryl Y. Hayashi, and David J. Merritt, “Insect Silk: One Name, Many Materials,” Annual Review of Entomology 55 (Jan. 1. 2010), 171–188.
49
Steven Pinker and Paul Bloom, “Natural Language and Natural Selection,” Behavioral and Brain Sciences 13 (1990), 709–710.
50
Они известны как многощетинковые черви, или полихеты.
51
См.: Simon Conway Morris, Why Are We Here? Дата обращения: 23.09.2021, расшифровка доступна в сети по адресу: https://www. whyarewehere.tv/people/simon-conway-morris/.
52
Russell D. Fernald, “Evolving Eyes,” International Journal of Developmental Biology 48 (2004), 701–705. Более того, информация о том, что глаза развились независимо от сорока до шестидесяти пяти раз, – оценка, которая довольно часто приводится в литературе, – обычно восходит к более давней статье, которую в 1977 году написали Луитфрид фон Сальвини-Плавен и Эрнст Майр, и, вероятно, эта статья уже устарела (а это означает, что примеров конвергентной эволюции структур глаза может оказаться больше).
53
Richard Dawkins, Ancestor’s Tale: A Pilgrimage to the Dawn of Evolution, (Boston and New York: Houghton Mifflin, 2004), 588.
54
Процесс фотосинтеза – серия невероятно сложных химических реакций, в ходе которых углекислый газ (под воздействием солнечного света) преобразуется в кислород и сахар. Обычный процесс называется С3-фотосинтезом. Но в ответ на изменения в окружающей среде, произошедшие за последние несколько миллионов лет, растения изобрели другой хитроумный способ – С4-фотосинтез. С3-фо-тосинтез получил свое название, поскольку первая сложная структура, сформированная в процессе, в своей основе имеет три атома углерода (фосфоглицерат). С4-фотосинтез назван так, потому что у первой структуры, возникшей в его процессе, присутствует четыре атома углерода (оксалоацетат, или щавелевоуксусная кислота). Ben P. Williams, Iain G. Johnston, Sarah Covshoff, and Julian M Hibberd, “Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis,” eLife (Sept. 28, 2013), https://elifesciences.org/ articles/00961. Некоторые ученые полагают, что общая эволюция фотосинтеза неизбежна в условиях, подобных тем, какие существовали на Земле. Нобелевский лауреат Джордж Уолд, рассуждая о возможности жизни на других планетах, отметил, что как только для любой жизненной формы приходит время извлекать энергию из света, излученного ближайшей звездой, «кажется вероятным, что под воздействием одних и тех же факторов… фотосинтез на Земле мог оказаться столь же неизбежным где угодно». Другими словами, если мы обнаружим жизнь на других планетах (или если бы мы, в качестве альтернативы, каким-то образом смогли вновь перезапустить эволюционный «фильм» на нашей планете), природа, возможно, развила бы те же самые пути фотосинтеза, которые мы изучали у различных растений, произрастающих на Земле. См.: George Wald, “Fitness in the Universe: Choices and Necessities,” Origins of Life 5, No. 1 (Jan. – April 1974), 13–14.
55
Выше я привожу лишь несколько примеров конвергентной эволюции. Другие ученые составили намного более пространные и всеобъемлющие перечни. Например, эволюционный биолог Саймон Конвей Моррис – вероятно, ведущий мировой эксперт по вопросам, связанным с конвергентной эволюцией, – создал сайт, на котором документируются новые примеры конвергенции. В своем перечне он приводит свыше 1500 ее примеров, начиная с защитных механизмов (например, способность к маскировке или к выделению ядовитых веществ [тетродотоксина]) и заканчивая биохимическими процессами (такими, как возникновение натриевых потенциал-зависимых ионных каналов и конвергенция нескольких биокаталитических процессов или развитие фунгицидной или гербицидной устойчивости) и процессами метаболизма (к ним относятся, к примеру, дыхание, производство гемоглобина [миоглобина] у животных или ферменты лизосом). Другие любопытные примеры – это конвергентное развитие яда и ядовитых клыков у ящериц, змей и синапсид; люциферины (группа ферментов, благодаря которым становится возможной биолюминесценция); появление плотоядных растений (их как минимум шесть); защитный механизм «натирания» (одни животные начинают пахнуть ядом других, отпугивая потенциальных хищников), который независимо развился у грызунов, ежей и тенреков; формирование млечного сока у растений и грибков; развитие иммунной системы у растений и животных; развитие прозрачных тканей. Другие любопытные примеры приведены на сайте www.mapoflife.org.
56
По крайней мере несколько ученых признали, что распространенность конвергенции ставит под угрозу нашу уверенность в целостности филогенетических деревьев, составленных эволюционистами. Более того, было бы гораздо легче и проще составить великое древо жизни, если бы конвергенции не существовало. Филогенетическое дерево развивается по мере того, как ученые осознают, что группы тех или иных организмов имеют больше общих черт, чем группы других организмов. Чем больше схожих характеристик у двух видов, тем ближе их родство. Проблема возникает, если организмы, которые приходятся друг другу дальними родственниками, развивают сходные свойства или функции. Вот что говорит об этом Саймон Конвей Моррис: «Полагаю, что тема конвергенции важна по двум главным причинам. Одна широко признается… [и] связана с филогенезом, с очевидной “зацикленностью” на двух вопросах: доверяем ли мы нашему филогенезу и тем самым устанавливаем, как шла конвергентная эволюция (как делают все) – или полагаемся на то, что наши отличительные признаки развились в ходе конвергентной эволюции (по какой угодно причине), и пытаемся определить, как проходил наш филогенез? Поскольку филогенез зависит от отличительных признаков, два вопроса неотделимы друг от друга… Даже если и так, ни один филогенез не свободен от конвергенций, и часто бывает так, что биолог верит в правдивость филогенеза, поскольку в его представлении определенные конвергенции просто слишком невероятны, чтобы оказаться правдой… За все то время, что я провел в библиотеках, меня особенно поражали прилагательные, при помощи которых описывалась конвергентная эволюция. Такие слова, как “замечательный”, “изумительный”, “необычайный” или даже “ошеломительный” или “необъяснимый”, встречаются повсеместно… частота этих определений, призванных