Интернет-журнал "Домашняя лаборатория", 2007 №1 - Журнал «Домашняя лаборатория»
Кристаллизующиеся квасцы могут захватывать из раствора трёхвалентное железо. Для его восстановления до двухвалентного состояния в раствор следует добавить чистый и свежий бисульфит натрия, который квасцов не образует или (лучше) пропускать в раствор медленный ток двуокиси серы.
Окись алюминия, полученную из алюмоаммониевых квасцов, применяют для синтеза оптического рубина для лазеров. Кристаллы квасцов имеют красивую форму и могут служить сувенирами.
Синтез сплавов металлов, воспламеняющихся на воздухе при нагревании
Синтез сплавов щёлочноземельных металлов, лития и магния удобно проводить в открытом железном тигле, помещённом в вертикальную печь. Высоту тигля следует делать около пяти диаметров.
Защиту сплава от воздуха можно осуществить, пропуская в него аргон через плотно вставленную в стенку тигля толстую иглу от шприца. Тигель следует прикрыть крышкой с отверстием для наблюдения. Дополнительную Защиту сплава можно осуществить подходящим флюсом из хлоридов калия и лития, но обычно этого не требуется. Плавку следует вести быстро.
В нагретый и продутый аргоном тигель по кусочкам добавляем промытый от масла чистым бензином и высушенный металл.
Повысив температуру, проводим плавление металлов. Сплав следует перемешать железной проволокой и либо разлить в вакуумируемый кокиль, либо, вынув тигель из печи, поставить на металлическую подставку для быстрого охлаждения.
Эти сплавы обычно крайне хрупки и могут быть выбиты из тигля при его деформации. Сплавы литий-магний и литий-кальций-магний — пластичны. Вопрос о их устойчивости на воздухе проверяется опытным путём. Порошок сплавов может быть пирофорным. Все работы следует производить в очках и вдали от горючих вещей. Заглядывать в тигель с расплавленным металлом лучше всего с помощью небольшого зеркальца.
Глава 12. Получение щёлочных и щёлочноземельных металлов.
Эта проблема может возникнуть в случае невозможности достать их в готовом виде, либо для введения их в объём лампы, что тяжело осуществить для таких активных металлов, как цезий и калий.
Наиболее простым способом их получения является восстановление оксидов с помощью титана или алюминия. (Восстановление алюминием — промышленный способ). Однако, этот способ требует предварительного получения оксидов металлов, что само по себе является достаточно сложной задачей. Работать с крайне гигроскопичными оксидами необходимо в боксе с абсолютно сухим воздухом, что тоже не всегда удобно.
Лучше исходить из бихроматов для калия, рубидия и цезия и хроматов для щёлочноземельных металлов. Они не гигроскопичны, однако содержат балластное вещество — шестивалентную окись хрома, а в ней — избыточный кислород, который, во первых, требует избытка восстановителя, а во вторых, делает реакцию восстановления сильно экзотермической, особенно для щёлочных бихроматов.
Обе проблемы решаются применением в качестве восстановителя избытка гидрида титана (циркония). Гидрид можно получить из отходов (стружки) и достаточно просто (см. синтез гидрида титана). Как восстановитель, этот гидрид выгоден и тем, что титан не образует с щёлочными и щёлочноземельными металлами сплавов. Это позволяет отгонять их (и, соответственно, работать) при более низких температурах. Более выгодными в качестве исходного вещества были бы хроматы Щ.З.М. типа Ва3(СгО4)2, синтез которых описан у Брауэра, но опять же, лишняя стадия синтеза при работе с малыми количествами вещества нежелательна.
Мы опишем получение металлического стронция из его карбоната.
Металлический стронций тяжелее найти, чем барий и, тем более, кальций. В то же время он может понадобится в лабораторной практике. Стронций в виде сплава с 75 % (вес.) магния образует хрупкий, но устойчивый на воздухе сплав, пригодный в качестве геттера (сплавы с большим содержанием стронция на воздухе рассыпаются в пыль). Сплав с 50 % алюминия (проценты везде весовые) в оболочке из титана тоже пригоден как испаряемый геттер и для зарядки катодов ЛПК.
Для определённого контингента лиц мы объясняем, что природный стронций не радиоактивен. Это серебристо-белый металл, который на воздухе быстро корродирует. Твёрдость его немного больше чем у свинца.
Для его получения следует вначале приготовить хромат. Растворив карбонат в азотной кислоте, получим нитрат, из которого добавкой небольшого избытка бихромата аммония можно осадить хромат стронция. Осадок следует прокипятить, промыть дистиллятом и просушить при температуре красного каления. На воздухе он стоек. На его основе делают жёлтую антикоррозионную краску.
Осадок следует смешать с тройным количеством гидрида титана и, вместо таблетирования, набить в гильзы из плотной нержавеющей сетки. Сами же гильзы возможно более плотно уложить в длинный тигель из железа (например, диаметром 15 и длинной 150 мм). Загрузка должна занимать около половины длинны тигля. Нагревая тигель в вакууме до 1100–1200 градусов, мы будем отгонять металл из термитной смеси. Восстановление идёт в две стадии: вначале выделяющийся водород соединяется с частью кислорода, образует воду и уносит её, а затем титан восстанавливает стронций. Встанет вопрос: где его конденсировать? Проще всего сделать тигель достаточно длинным, чтобы стронций собирался в холодной зоне. Более культурно поместить в двух-чётырёх диаметрах тигля от термита пальчиковый водоохлаждаемый холодильник.
Учитывая, что горячий стронций прочно пристаёт к железу, второй способ предпочтительнее. Пригодна описанная у Брауэра аппаратура для перегонки в вакууме щёлочноземельных металлов. Если же пойти по первому пути, то следует в тигель вставить легко вынимаемую железную втулку на всю длину от загрузки до конца тигля. Она должна легко выниматься (слегка коническая), но плотно прилегать в горячей зоне к стенкам, чтобы металл не конденсировался между ней и стенкой тигля. Стенки втулки не следует делать толстыми, так как для отделения металла её придётся разрезать вдоль ножницами.
Вакуум для работы можно обеспечить способом, описанным у Брауэра для восстановления цезия кальцием из хлорида. Тигель вставляется в длинную пробирку из пирекса с зазором около одного миллиметра. Через 3–4 диаметра пробирки выше тигля следует припаять два баллончика из пирекса диаметром 30–40 мм с распыляемыми титановыми электродами для поглощения газов, штенгель для откачки и толстостенную трубку типа штенгеля, но запаянную и имеющую плавное сужение к концу. На эту трубку нанесён надрез и одета хлорвиниловая трубка с таким расчётом, чтобы обломав трубку по надрезу, в систему можно было впустить аргон без разгерметизации на атмосферу.
Вся сборка помещается в трубчатую печь с водородной атмосферой и откачивается роторным насосом. Давление следует контролировать ртутным манометром и по виду разряда в баллончиках. Последний способ позволяет судить и о составе остаточных газов в системе. Перед нагревом следует проверить искровым течеискателем герметичность системы. При наличии течей эксперимент можно прервать на этой стадии и починить систему.
Затем можно постепенно начинать разогрев. При медленном нагреве до температуры 300–600 градусов происходит интенсивное выделение водорода и паров воды, поэтому на насосе следует включить газобалласт. Далее вакуум начинает улучшаться, газобалласт становится излишним и вредным