Артур Бенджамин - Магия математики: Как найти x и зачем это нужно
А теперь взгляните на x² + 9x = –13. Найти множители для x² + 9x + 13 не так-то и просто. Но не отчаивайтесь. В таких случаях на помощь нам придет формула корней квадратного уравнения. Пользу ее переоценить невозможно – вот, смотрите сами:
ax² + bx+ c = 0имеет решение
Символ ± означает «плюс» или «минус». Для примера: в уравнении
x² + 4x – 12 = 0a = 1, b = 4, c = –12.
Значит, наша формула утверждает, что
Поэтому x = –2 + 4 = 2 или x = –2 – 4 = –6, что и требовалось доказать. Думаю, вы не станете спорить, что для решения этого примера более уместен был бы метод разложения на множители.
ОтступлениеЕще одним забавным способом решения квадратных уравнений является метод дополнения до полного квадрата. Например, чтобы решить уравнение x² + 4x = 12, добавим 4 в обе его части, чтобы получить
x² + 4x + 4 = 16Сделать это нужно для того, чтобы преобразовать левую часть в (x + 2)(x + 2). Так наша задачка превращается в
(x + 2)² = 16Другими словами, (x + 2)² = 42. Значит,
x + 2 = 4 или x + 2 = –4что дает нам x = 2 или x = –6, как мы уже выяснили чуть выше.
Но для уравнения
x² + 9x + 13 = 0наш выбор очевиден – и это формула корней. У нас получается, что a = 1, b = 9, а c = 13. То есть
Согласитесь – в общем-то, не самый очевидный случай. По большому счету, в математике очень немного формул, которые действительно надо помнить, но формула корней квадратного уравнения – одна из них. Достаточно немного попрактиковаться, и вы легко обнаружите, что использовать эту формулу просто, как… дважды два.
ОтступлениеПочему работает формула корней квадратного уравнения? Давайте запишем уравнение ax² + bx + c = 0 как
ax² + bx= –cа потом разделим обе части на a (которое не равно 0), чтобы получить
Извлечем квадратный корень из левой и правой частей уравнения:
и в результате получим
Что и требовалось доказать.
Алгебра в графиках
В XVII веке в математике произошел настоящий прорыв: французы Пьер де Ферма и Рене Декарт независимо друг от друга придумали отличный способ визуализации алгебраических уравнений (равно как и алгебраическую запись геометрических объектов).
Начнем, пожалуй, с графика простого уравнения
y = 2x + 3Оно означает, что любое значение переменной х мы должны удвоить, а потом прибавить к нему 3 – так у нас и получается y. В таблице ниже приведены несколько возможных пар значений для x и y. Рядом с таблицей – график, на котором все эти значения отмечены точками, и можно легко видеть, что все они определенным образом упорядочены. Посмотрите на координаты: (–3, 3), (–2, –1), (–1, 1) и так далее. Соединив эти точки одной линией и уведя ее в бесконечность, мы получим то, что называется графиком. График рядом с таблицей есть отображение уравнения y = 2x + 3.
Добавим немного необходимой терминологии. Горизонтальная линия на нашей картинке называется осью X, вертикальная – осью Y. Сам график составляет линия с наклоном 2, которая пересекает ось Y в точке 3. Наклон – это степень «крутизны» линии. Наклон, равный 2, обозначает, что каждый раз, когда x увеличивается на одну единицу, y всегда будет увеличиваться на две (что очень хорошо видно из таблицы). Алгебраически точка пересечения с осью Y – значение y при x = 0. Геометрически же все очевидно: это точка пересечения графика с вертикальной линией. То есть график уравнения
y = mx+ bпредставляет собой линию с наклоном m, которая пересекается с осью Y в точке b (и наоборот). Линия обычно ассоциируется с ее уравнением, Поэтому мы можем просто сказать, что график на предыдущем рисунке – это линия y = 2x + 3.
А вот график линий y = 2x – 2 и y = –x + 7:
Первая линия y = 2x – 2 имеет наклон 2 и пересекается с осью Y в точке –2 (график получается параллельным линии y = 2x + 3 с полным сдвигом вниз по вертикали на 5). Наклон второй линии y = –x + 7 равен –1, поэтому при увеличении x на единицу на ту же единицу уменьшается и y. Призовем на помощь алгебру, чтобы найти точку (x, y) пересечения этих двух линий – именно в ней значения наших двух переменных совпадут, и x мы будем искать исходя из того, что он здесь равен y. Иными словами, нам надо решить
2x – 2 = –x + 7Добавим к обеим частям сначала x, потом 2 и получим
3x = 9то есть x = 3. А зная x, мы можем использовать другое уравнение, чтобы найти y. Если y = 2x – 2, значит, y = 2(3) – 2 = 4 (а y = –x + 7 дает нам y = –3 + 7 = 4). Значит, графики пересекаются в точке (3, 4).
Зная две точки, лежащие на одной прямой, нарисовать график в виде целой линии становится делом техники. Немного сложнее иметь дело с квадратичной функцией (и фигурирующим в ней x²). Самое простое для отображения в виде графика – уравнение y = x² (изображен ниже). Подобные графики называются параболами.
А вот график уравнения y = x² + 4x – 12 = (x + 6)(x – 2).
Обратите внимание, что, когда x = –6 или x = 2, y = 0. Это легко заметить на графике – в тех двух его местах, где парабола пересекает ось x. И совсем не случайно, что самая нижняя ее точка располагается точно в центре между ними – при x = –2 и y = –16. Это вершина.
С параболами мы сталкиваемся каждый день. Каждый раз, когда вы видите движущийся по кривой предмет, будь то летящий мяч или струя воды в фонтанчике, вы, в сущности, видите параболу (просто взгляните на картинку чуть ниже). Свойства параболы активно используются в устройстве фар, телескопов, спутниковых тарелок и многих других приборов.
Еще немного терминологии. До этого все наши примеры содержали в себе многочлены – комбинации чисел и одной переменной (скажем, x), которая может быть возведена в положительную целую степень. Наибольшую из степеней входящего в многочлен одночлена называют степенью многочлена. Например, 3x + 7 – это (линейный) многочлен первой степени. Многочлен второй степени, вроде x² + 4x – 12, называется квадратным, многочлен третьей степени (5x³ – 4x³ – √2) – кубическим. Бывают многочлены и других, бóльших, степеней (я, правда, никогда не слышал их специальных названий – главным образом, думаю, потому, что не так уж и часто они встречаются. Интересно, насколько часто используются в профессиональной литературе термины «квартический», «квинтический» и т. п. многочлены? Встречаются, наверное, но я, честно говоря, по этому поводу настроен немного скептически). А еще бывают многочлены, в которых нет переменных (например, 17) – о таких говорят, что они стоят в нулевой степени. Ну и последнее, что вам нужно знать о многочленах – это то, что многочленом не может быть сочетание с бесконечным количеством чисел. Например, 1 + x + x² + x³ +… – не многочлен, а так называемый бесконечный ряд, о которых мы поговорим подробнее в главе 12.
Обратите внимание, что в случае с многочленами степень, в которую возводятся переменные, может быть выражена только положительным целым числом – ни в коем случае не отрицательным и не дробным. То есть если вам попадается уравнение с чем-нибудь вроде y = 1/x или y = √х, это не многочлен, потому что 1/x = x–1, а √х = x½.