Kniga-Online.club
» » » » Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Читать бесплатно Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики. Жанр: Прочая научная литература издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Индийский физик Ашок Сен был первым, кто попробовал собрать экстремальную черную дыру и проверить струнную теорию энтропии черных дыр. В 1994 году он подошел к этому очень близко, но все же недостаточно для завершения истории. В среде физиков-теоретиков Сена ценят очень высоко. Он имеет репутацию глубокого мыслителя и технического волшебника. Застенчивый, хрупкий человек с исключительно сильным мелодичным бенгальским акцентом, из-за которого его иногда трудно понять. Тем не менее его лекции славятся своей ясностью. В строго педагогической манере он записывает каждое новое понятие на доске. Идеи разворачиваются с неизменной последовательностью, которая делает все сказанное кристально ясным. Его научным статьям тоже присуща эта совершенная ясность.

Я даже не знал, что Сен занимался черными дырами. Но вскоре после того, как я вернулся в Соединенные Штаты из поездки в Кембриджд, кто-то — думаю, это была Аманда Пит — вручил мне для прочтения его статью. Она была длинная и техническая, но в последних нескольких абзацах Ашок применял идеи теории струн — те, что я описывал в Ратджерсе, — чтобы вычислить энтропию нового класса экстремальных черных дыр.

Черная дыра Сена была сделана из деталей, о которых мы знали в 1993 году, — фундаментальных струн и шести дополнительных свернутых размерностей пространства. То, что сделал Сен, было простым, но очень ясным развитием моих собственных ранних идей. Его главная инновация состояла в том, чтобы начать со струны не только очень сильно возбужденной, но также еще и многократно охватывающей одно из свернутых измерений. В упрощенном цилиндрическом мире — расширенной версии Лайнландии — витки струны выглядят как резиновая лента, обернутая вокруг куска пластиковой трубы.

Такие струны тяжелее обычных частиц, поскольку требуется энергия для того, чтобы растянуть их вокруг цилиндра. В типичной теории струн масса витка струны может составлять несколько процентов планковской массы.

Затем Сен взял простую струну и дважды обернул ее вокруг цилиндра.

Струнные теоретики сказали бы, что эта струна имеет винтовое число[144], равное 2, и она еще тяжелее, чем струна, делающая один виток. Но что, если струна намотана вокруг свернутого измерения не один или два раза, а миллиарды раз?

На количество оборотов струны вокруг свернутого измерения пространства нет ограничений. В результате она может сравниться по массе со звездой или даже с галактикой. Но место, которое она занимает в обычном пространстве, то есть в несвернутых размерностях обычного трехмерного пространства, очень мало. Вся эта масса заключена в столь крошечном пространстве, что она гарантированно будет черной дырой.

Сен применил еще одну хитрость, еще один ингредиент теории струн образца 1993 года: извивы, движущиеся вдоль струны. Информация должна была скрываться в особенностях этих извивов, в точности как я описывал это годом ранее.

Извивы на эластичной струне не остаются неподвижными. Они распространяются вдоль струны, подобно волнам: одни по часовой стрелке, а другие против. Два извива, движущиеся в одном направлении, гонятся друг за другом по струне, никогда не сталкиваясь. Однако если две волны движутся в противоположных направлениях, они сталкиваются, порождая сложную мешанину. Поэтому Сен решил хранить всю скрытую информацию в волнах, движущихся «в ногу» по часовой стрелке без всяких столкновений.

Когда все ингредиенты были собраны и различные рукоятки включены, у струны Сена не было других возможностей, кроме как превратиться в черную дыру. Но вместо обычной черной дыры из-за накручивания струны вокруг свернутого измерения появляется совершенно особый тип экстремальной черной дыры.

Экстремальная черная дыра электрически заряжена. Но где же электрический заряд? Ответ был известен уже много лет: накручивание струны на компактизированное измерение придает ей электрический заряд. Каждый оборот струны добавляет одну единицу заряда. Если струна намотана в одном направлении, получается положительный заряд, если в противоположном — отрицательный. Гигантские многократно намотанные струны Сена также могут рассматриваться как сгустки электрического заряда, скрепляемые гравитацией, — иными словами, как заряженная черная дыра.

Площадь — это геометрическое понятие, а геометрия пространства и времени управляется эйнштейновской общей теорией относительности. Единственный способ узнать площадь горизонта черной дыры — это вывести ее из уравнений Эйнштейна для гравитации. Сен мастерски владел этими уравнениями и легко (легко для него) решил их для специального сконструированного им типа черных дыр, а затем вычислил площадь горизонта.

И тут случилась катастрофа! Когда уравнения были решены и площадь горизонта подсчитана, результат оказался равным нулю! Иными словами, вместо замечательной обширной оболочки горизонт сжался до размеров точки пространства. Вся энтропия, запасенная в извивающихся, змеящихся струнах, была, похоже, сконцентрирована в крошечной точке. Это не только было проблемой для черных дыр, но и прямо противоречило голографическому принципу, утверждающему, что максимальная энтропия области пространства равна ее площади в планковских единицах. Где-то была допущена ошибка.

Сен ясно видел, что возникла проблема. Уравнения Эйнштейна классические, то есть они игнорируют эффекты квантовых флуктуаций. Без квантовых флуктуаций электрон в атоме водорода упал бы на ядро, и весь атом стал бы по размеру не больше протона. Но квантовые движения в основном состоянии, вызванные принципом неопределенности, делают атом в 100 000 раз больше ядра. Сен понял, что то же самое может происходить и с горизонтом. Хотя классическая физика предсказывает, что он должен сжиматься в точку, квантовые флуктуации могли бы расширить его до того, что я называю растянутым горизонтом.

Сен внес необходимые поправки: быстрая, «на обороте конверта», оценка показала, что энтропия и площадь растянутого горизонта действительно пропорциональны друг другу. Это был еще один триумф струйной теории энтропии горизонта, но, как и прежде, победа была неполной. Точность вновь ускользнула; оставалась неопределенность относительно того, насколько именно квантовые флуктуации могут растянуть горизонт. Блестящая работа Сена по-прежнему заканчивалась расплывчатой тильдой. Максимум, что он мог сказать, это то, что энтропия черной дыры пропорциональна площади горизонта. Это было почти попадание, но «почти» не считается. «Последний гвоздь в гроб» еще предстояло рассчитать.

Это почти состоявшееся вычисление имело не больше шансов убедить Стивена Хокинга, чем мои аргументы. Тем не менее кольцо смыкалось. Для реализации предложения Вафы и создания экстремальной черной дыры с большим классическим горизонтом требовались новые детали конструктора «Тинкертой». К счастью, их уже готовы были открыть в Санта-Барбаре.

D-браны Полчински

D-браны следовало бы называть Р-бранами — по инициалу Полчински. Но к тому времени, когда Джо открыл свои браны, термин Р-браны уже использовался для совсем другого объекта. Поэтому Джо назвал свои — D-бранами, в честь немецкого математика девятнадцатого века Иоганна Дирихле. Тот, конечно, ничего непосредственно с D-бранами не делал, но его математические исследования волн имели к ним некоторое отношение.

Слово брана не встречается в словарях, кроме как в контексте теории струн. Оно происходит от общеупотребительного термина мембрана, означающего двумерную поверхность, способную изгибаться и растягиваться. Открытие свойств D-бран, сделанное Полчински в 1995 году, было одним из самых важных событий в истории современной физики. Вскоре оно принесло замечательные результаты во всех областях — от черных дыр до ядерной физики.

Простейшая брана — это нульмерный объект, называемый О-браной. Частица или точка пространства нульмерна, по точке невозможно перемещаться, поэтому частица и 0-брана — это синонимы. Сдвинувшись на один уровень, мы получаем 1-браны, которые одномерны. Фундаментальные струны — это частный случай

1-бран. Мембраны — двумерные листы материи — это 2-браны. А что можно сказать о 3-бранах? Они существуют? Представьте себе твердый куб из резины, заполняющий некоторую область пространства. Его можно назвать заполняющей пространство 3-браной.

Может показаться, что мы исчерпали измерения. Очевидно, что нет возможности уложить 4-брану в трехмерное пространство. Но что, если у пространства есть свернутые измерения, шесть штук, например? В этом случае одно из измерений 4-браны может тянуться в свернутом измерении. В действительности если всего cyществует девять измерений пространства, то в нем могут содержаться любые виды бран, вплоть до 9-бран.

Перейти на страницу:

Леонард Сасскинд читать все книги автора по порядку

Леонард Сасскинд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики отзывы

Отзывы читателей о книге Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики, автор: Леонард Сасскинд. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*