Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Ускорим затвор еще сильнее. Теперь вы видите, что каждый участок струны флуктуирует и вибрирует, так что новая картинка выглядит более запутанной и растянутой.
Но не будем на этом останавливаться, повторим процесс. Каждая маленькая петелька, каждый изгиб струны разрешается на еще быстрее флуктуирующие петли и завитки.
Что видит Боб, когда наблюдает за струноподобной частицей, падающей к горизонту? Сначала колебательные движения слишком быстры, чтобы их заметить, и все, что он видит, — это крошечный ступицеподобный центр. Но вскоре проявляется странная природа времени вблизи горизонта, и движения струны начинают казаться все более медленными. Постепенно Боб видит все большую часть колеблющейся структуры, точно так же, как при наблюдении Алисиного составного пропеллера. С течением времени становятся видны все более быстрые колебания, а струна кажется растущей и распространяющейся по всему горизонту черной дыры.
Но что будет, если мы падаем вместе с частицей? Тогда время ведет себя нормальна Высокочастотные флуктуации сохраняют свою высокую частоту, далеко выходящую за пределы возможностей нашей медленной камеры. Нахождение вблизи горизонта не дает нам никаких преимуществ. Как и в случае с Алисиным аэропланом, мы можем видеть только крошечную ступицу.
Теория струн и квантовая теория поля имеют то общее свойство, что вид предметов в них меняется при изменении скорости срабатывания затвора. Но в квантовой теории поля объекты не растут. Вместо этого они распадаются на все меньшего размера объекты — все меньшие русские матрешки. Но когда составляющие становятся меньше планковской длины, начинает работать совершенно иная схема — схема Алисиного аэроплана.
В аллегорической книге Рассела Хобана «Мышонок и его отец»[137] имеется забавная (непреднамеренная) метафора принципа работы квантовой теории поля. Однажды в ходе своего кошмарного приключения игрушечные заводные мыши — отец и сын — обнаруживают бесконечно удивительную банку «Собачьего корма Бонзо». На этикетке банки была изображена собака, держащая банку «Собачьего корма Бонзо», на этикетке которой собака держала банку «Собачьего корма Бонзо», на этикетке которой… И мыши все всматривались в эту цепочку, стараясь найти «последнюю видимую собаку», но так и не обрели уверенности, что смогли ее разглядеть.
Объекты внутри объектов внутри объектов — это и есть суть квантовой теории поля. Однако, в отличие от этикетки «Бонзо», здесь объекты движутся, и чем они меньше, тем быстрее. Поэтому, для того чтобы их увидеть, нужны и более мощный микроскоп, и более быстрая камера. Но обратите внимание: ни разрешенная на части молекула, ни банка «Собачьего корма Бонзо» не становится больше по мере того, как в них открываются все новые и новые структуры.
Теория струн в этом отличается и работает, как Алисин аэроплан. По мере того как объекты замедляются, становится видно все больше и больше струнных «пропеллеров». Они занимают все больше пространства, так что вся сложная структура вырастает в размерах. Конечно, Алисин аэроплан — это аналогия, но она отражает многие математические свойства теории струн. Струны, как и любые объекты, подвержены квантовой дрожи, но особым образом. Подобно Алисиному аэроплану или симфонической версии собачьего свистка, струны вибрируют на множестве разных частот. Большинство этих вибраций слишком быстры для регистрации даже с использованием очень быстрых затворов на мощных ускорителях частиц.
Разбираясь со всем этим в 1993 году, я также начал понимать слепое пятно Хокинга. Для большинства физиков, обученных квантовой теории поля, представление о растущих частицах с неограниченной дрожащей структурой было совершенно чуждым. По иронии судьбы, единственным человеком, который стал догадываться о такой возможности, был величайший специалист в области квантовой теории поля, мой товарищ по оружию Герард 'т Хоофт. Хотя он излагал это по-своему — не на языке теории струн, — его работа также отражает ту идею, что объекты увеличиваются с ростом временнóго разрешения, с которым их исследуют. Напротив, хокинговские ухищрения включали этикетку от «Собачьего корма Бонзо», но не Алисин аэроплан. Для Стивена квантовая теория поля с ее точечными частицами была началом и концом микроскопической физики.
21
Обсчет черных дыр
Однажды утром, когда я спустился к завтраку, моя жена Энн сказала, что я надел футболку задом наперед; V-образный вырез был у меня на спине. Позднее в тот же день, когда я вернулся домой с пробежки, она засмеялась и сказала: «Теперь она шиворот-навыворот». Это заставило меня задуматься: сколько существует способов надевания футболки? Энн насмешливо сказала: «Это одна из тех глупостей, о которых вы, физики, все время думаете». Просто для того, чтобы доказать мое умственное превосходство, я быстро объявил, что существует 24 способа надевания футболки. Можно просунуть голову в любое из четырех отверстий. Это оставляет три отверстия для торса. После просовывания головы и торса в выбранные два отверстия остается две возможности для левой руки. После того как и этот выбор сделан, для правой руки остается единственный вариант. Таким образом, имеется 4x3x2 = 12 вариантов. Но теперь можно вывернуть футболку наизнанку, что даст еще 12 возможностей, так что я гордо заявил, что решил задачу: существует 24 способа носить футболку. На Энн это не произвело впечатления. Она ответила: «Нет, их 25. Ты один забыл». Я озадаченно спросил: «И что же я упустил?» Бросив на меня полный надменности взгляд, она ответила: «Ты можешь ее скомкать и выбросить…» Ну, вы уловили мысль[138].
Физики (и даже в большей мере математики) очень хорошо умеют подсчитывать разные вещи, в особенности возможности. Их подсчет — это ключевой момент в понимании энтропии, но в случае черных дыр — что именно мы подсчитываем? Уж конечно, не число способов, которыми черная дыра может носить футболку.
Почему подсчет возможностей для черных дыр так важен? В конце концов, Хокинг уже получил ответ, когда вычислил, что энтропия равна площади горизонта в планковских единицах. Однако вопрос об энтропии черных дыр окружен колоссальным количеством недоразумений. Позвольте я напомню почему.
Стивен доказывал, что сама идея энтропии как скрытой информации — информации, которую вы могли бы получить, если бы узнали все детали, — должна нарушаться при включении в рассмотрение черных дыр. И он был далеко не одинок в этом мнении. Почти все эксперты по черным дырам пришли к тому же заключению: энтропия черных дыр является чем-то иным, не имеющим ничего общего с подсчетом квантовых состояний.
Почему Хокинг и другие релятивисты пришли к столь радикальному взгляду? Проблема была в убедительном аргументе Стивена о том, что можно кидать и кидать информацию в черную дыру — подобно запихиванию в вагончик бесконечного числа клоунов — без всякой утечки информации вовне. Если энтропия имеет обычный смысл (полное число битов, которые могут быть скрыты в черной дыре), то количество информации, которое можно скрыть, должно быть ограниченно. Но если в черной дыре может пропасть бесконечное число битов, то из этого следует, что расчет энтропии черной дыры нельзя выполнить путем подсчета скрытых возможностей, а уже это означало бы необходимость революционного пересмотра оснований одного из старейших и надежнейших разделов физики — термодинамики. Отсюда вытекала острая необходимость знать, действительно ли энтропия черной дыры считается как число возможных конфигураций последней.
В этой главе я собираюсь рассказать о том, как струнные теоретики подошли к этому подсчету и как по ходу дела они получили надежное квантово-механическое обоснование энтропии Бекенштейна — Хокинга — обоснование, которое не оставляло места для потери информации. Это было крупное достижение, которое сильно продвинуло нас на пути подрыва утверждения Стивена о бесконечном количестве информации, которое способна проглотить черная дыра.
Но прежде позвольте мне объяснить, на какой точке зрения изначально стоял Герард 'т Хоофт.
Догадка 'т ХоофтаСуществует множество различных элементарных частиц, и, я думаю, надо честно признать, что физики не в полной мере понимают, чем одни из них отличаются от других. Но и не Задаваясь глубокими вопросами, мы можем сделать эмпирический обзор всех частиц, существование которых либо уже подтверждено экспериментально, либо предсказывается из теоретических соображений. Один из способов все их отобразить состоит в нанесении их на ось и создании своего рода спектра элементарных частиц. Будем откладывать по горизонтальной оси массу (не в масштабе), поместив слева самые легкие объекты, а вправо масса будет увеличиваться. Вертикальные черточки отмечают отдельные частицы.