Механизмы мозга - Latto
Когда протоплазма у основания аксона восстанавливает свои первоначальные свойства, в ней может быть вызван новый нервный импульс. Это происходит, как только нервные импульсы, поступающие в нейрон через его входные участки, вновь создают в теле нейрона степень деполяризации, достаточную для возникновения нового разряда у основания аксона. Если приходящие сигналы сильны, для этого не требуется много времени. Потенциалы действия следуют друг за другом с короткими интервалами, и нервный сигнал может достичь частоты нескольких сотен импульсов в секунду. Если же сигналы, поступающие через входные участки, слабы, то для повторной пороговой деполяризации тела нейрона после разряжающего действия каждого импульса может потребоваться сравнительно долгое время; в таком случае сигнал, распространяющийся по аксону, имеет частоту всего несколько импульсов в секунду.
Когда потенциал действия достигает синапса, соединяющего данный аксон с телом следующего нейрона или с одним из его дендритов, происходят события совершенно иного рода. В синапсе приходящий электрический сигнал оказывается блокированным. Электронно-микроскопическое исследование показывает, в чем здесь дело: аксон передающего нейрона не соприкасается непосредственно с дендритом или телом нейрона, воспринимающего импульс. Всегда существует промежуток величиной около одной миллионной дюйма (примерно 200 ангстрем). Путем остроумных и тщательных экспериментов было установлено, что нервный импульс преодолевает этот промежуток с помощью химических передатчиков. Каждый приходящий импульс вызывает освобождение ничтожного количества вещества-передатчика, которое диффундирует через жидкость синаптической щели на другую ее сторону. Под влиянием этого вещества проницаемость мембраны воспринимающего нейрона изменяется, и это изменение приводит к перераспределению ионов, ведущему к изменению электрического заряда в протоплазме тела этого нейрона. Примерно за 1 миллисекунду такого рода «импульс» электрического заряда распределяется по всему телу клетки и тем самым изменяет степень поляризации, которая и определяет, произойдет ли разряд у основания аксона. Важно отметить, что явления, происходящие на входных участках нейрона, протекают не по закону «все или ничего». Действительно, с точки зрения специалиста по вычислительным машинам они больше похожи на перевод данных из цифровой формы в аналоговую. После каждого пришедшего по аксону импульса на теле следующего нейрона накапливается некоторый заряд, рассеивающийся относительно медленно. Хотя все приходящие импульсы имеют одну и ту же величину, поступление сигнала более высокой частоты вызывает в синапсе пропорционально больший эффект деполяризации. Последний в свою очередь может вызвать импульсный разряд сравнительно высокой частоты в аксоне, отходящем от второго нейрона.
Нарисованная нами картина слишком упрощена в одном важном отношении. Разве только в редких случаях нейрон приводится в действие входным сигналом от одного-единственного нейрона. Как каждый аксон образует синапсы на дендритах и телах нескольких нейронов, так и каждый нейрон имеет синапсы с окончаниями нескольких аксонов, принадлежащих разным нейронам. Тело воспринимающего нейрона действует как своего рода «сумматор» для поляризующих эффектов, вызываемых различными входными сигналами. Конечно, эффект деполяризации, вызываемый в теле нейрона приходящим импульсом, через 5—10 миллисекунд исчезает, и чтобы входные сигналы могли суммироваться и произвести совместное действие, они должны приблизительно совпадать во времени. Но в этом промежутке суммация вполне возможна. Фактически данные говорят о том, что она должна иметь место: для того чтобы вызвать в теле нейрона деполяризацию, достаточную для возбуждения аксона, сигналы должны поступать на несколько входов. Хотя в неврологической литературе часто приводятся схемы действующих подсистем, образованных отдельными цепями из нескольких нейронов, обычно это лишь схемы. У животных, по крайней мере у высших, нейроны никогда не выступают поодиночке (разве только в воображении исследователя). В естественных условиях сенсорные стимулы обычно приходят по большому числу смежных нервных волокон; число промежуточных нейронов, вовлекаемых в процесс, также велико, и каждый из них имеет входные соединения с аксонами нескольких сенсорных нейронов; точно так же и любой выходной сигнал, т. е. результат обработки информации в нервной системе, передастся на выход по нескольким аксонам, активирующим многочисленные мышечные волокна, участвующие в реакции. Таким образом, в нервной системе существуют параллельные каналы связи, что и объясняет ее относительно малую чувствительность к повреждению небольшого числа нейронов. Кроме того, это способствует более строгой пропорциональности между действием мышц и вызывающим его стимулом. Дело в том, что величина порога возбуждения для разных параллельных нейронов всегда несколько различна. Вследствие этого слабые входные раздражители могут активировать лишь несколько нейронов, более сильные раздражители — большее их число, а чтобы вызвать активацию всех нейронов, требуется очень сильный стимул. Наконец, множественность связей между приносящими сигналы аксонами и воспринимающими их нейронами в передаточных пунктах создает благоприятные возможности для осуществления эффектов пространственной интеграции, на основании которых можно, вероятно, объяснить некоторые более сложные особенности поведения нервной системы (правда, в то же время эти эффекты служат источником трудностей для ученого, пытающегося проследить во всех деталях пути нервных импульсов).
Интегрирующие свойства нейрона не сводятся к суммации эффектов деполяризации в теле нейрона. Имеются механизмы, с помощью которых часть приходящих сигналов может ослаблять, а не усиливать общий эффект. Некоторые типы нейронов являются «тормозными». Химическая организация их такова, что в местах соединения их аксонов с дендритом или телом другого нейрона приходящий нервный импульс вызывает выделение какого-то вещества, влияющего на проницаемость мембраны воспринимающего нейрона таким образом, что возникновение разряда в его аксоне не облегчается, а затрудняется. Этот электрический эффект называют тормозным постсинаптическим потенциалом в отличие от возбуждающего постсинаптического потенциала, вызываемого прибытием нервных импульсов через синапсы более обычного, деполяризующего типа. Типичный промежуточный нейрон получает входные сигналы как от нескольких возбуждающих, так и от нескольких тормозных нейронов. Импульсы в его аксоне возникают или не возникают в каждый данный момент в зависимости от того, приведут ли интегрированные эффекты всех более или менее одновременных входных сигналов к надпороговой деполяризации внутренней стороны клеточной мембраны. И если импульсы в аксоне возникнут, то частота их будет определяться тем, насколько эта деполяризация превысит пороговую величину.
Наконец, нужно упомянуть еще об одном свойстве нейрона. При некоторых обстоятельствах он ведет себя как элемент с переменным порогом. Если сумма некоторого числа возбуждающих входных сигналов чуть ниже порога возбуждения, то даже очень слабый добавочный сигнал, пришедший