Ирина Радунская - Безумные идеи
Казалось крайне заманчивым заглянуть внутрь вещества, скованного морозом, когда его обычно подвижные, «полные жизни» атомы как бы впадают в зимнюю спячку. Тогда они меньше взаимодействуют между собой, их легче «рассмотреть», удобнее изучить.
Ученые, которые выбрали своей специальностью физику низких температур, занимали в науке особое место. Они, пожалуй, несколько напоминали... охотников за тайнами морского дна. Исследователь подводного мира не станет спускаться на дно в сильную волну. Ему будут мешать песок, ил, обрывки водорослей, замутившие воду. Нет, для знакомства с жизнью моря он выберет тихий день, когда вода прозрачна и ясно видно каждое движение подводных растений, легко наблюдать повадки крупных рыб и даже маленьких рачков, креветок и мальков.
Для охотников за тайнами, скрытыми в глубинах вещества, тоже важна «погода» в этом своеобразном мире. Чем выше температура, тем оживленнее ведут себя атомы и молекулы, из которых состоит тело. И в этом интенсивном общем движении частичек материи теряются, скрываются от глаз наблюдателя особенности жизни каждой отдельной частички. А ведь от них зависят поведение и особенности всего вещества в целом.
Вот почему ученые прибегли к охлаждению веществ. Они правильно предположили, что при этом станут более доступными тонкие эффекты поведения отдельных частичек.
Первая лаборатория по изучению низких температур в Советском Союзе была открыта в Харькове. Она стала центром притяжения многих талантливых молодых физиков. Среди них был и Леонид Федорович Верещагин, ныне действительный член Академии наук.
– Основной трудностью, с которой столкнулся коллектив лаборатории, – вспоминает Леонид Федорович, – была проблема глубокого охлаждения. Нас особенно интересовала, конечно, самая низкая в природе температура или хотя бы близкая к ней. А это минус 273 градуса Цельсия, или абсолютный нуль по шкале Кельвина. Получить такую температуру очень трудно. Для этого надо строить громоздкие машины искусственного климата, в которых можно было бы создать более чем арктический мороз. И вот однажды у нас появилась идея. Тело при охлаждении уменьшается в объеме. А при очень низкой температуре вещества сжимаются особенно сильно. Холод поступает с ними точь-в-точь как высокое давление. Вот мы и подумали: охладить вещество сложно и трудно. Так не удобнее ли заменить охлаждение сжатием?
И Леонид Федорович рассказывает об одном из самых первых опытов.
В сосуде – кислород. Его не видно – это бесцветный газ. Но вот сосуд ставят в установку искусственного климата. Сильно охлажденный кислород превращается в бледно-голубую жидкость. Скорость хаотического движения молекул уменьшается, газ как бы застывает. Если сосуд встряхнуть, будет полное впечатление, что в нем подкрашенная вода.
Годами для получения жидкого кислорода и других газов ученые пользовались специальной сложной аппаратурой.
Но вот однажды, вместо того чтобы поместить кислород в машину искусственного климата, его сжали поршнем. Сначала газ оставался бесцветным. Тогда его сжали еще сильнее. Кислород начал голубеть, послушно превращаясь в жидкость.
Первые же опыты применения высокого давления вместо низкой температуры для изучения строения вещества убедили в огромных перспективах нового метода.
Верещагин страстно увлекся новой областью физики. Где только можно, он заменял охлаждение сжатием. Одно за другим он исследовал новым методом самые различные вещества: жидкости, газы, твердые тела. Об опытах молодого физика заговорили. Его попросили доложить о своей работе в Москве.
Доклад харьковчанина услышал академик Зелинский и просто «заболел» высоким давлением. Это был удивительный человек, его недаром считали классиком органической химии. Широко образованный, влюбленный в науку, он чутко прислушивался к веянию времени. Маститый химик считал, что для изучения веществ необходимо сочетать физические и химические методы, что введение физических методов исследования и воздействия на вещество послужит ключом к развитию' химии будущего. Конечно, любил говорить он, вовсе не обязательно химикам становиться физиками, а физикам химиками. Но они должны дополнять друг друга, действовать согласованно на трудных дорогах, ведущих в мир атомов и молекул.
Зелинский создал в руководимом им тогда Институте органической химии Академии наук СССР лабораторию сверхвысоких давлений, возглавить которую пригласил молодого харьковского ученого. Так была создана первая в Союзе лаборатория сверхвысоких давлений, которая превратилась в 1954 году, уже после смерти академика, в самостоятельную организацию, а с лета 1958 года в Институт физики сверхвысоких давлений Академии наук СССР.
Горячий лед
Когда ученые заглянули в глубь вещества, сжатого со всех сторон высоким давлением, им открылся мир удивительных превращений. На их глазах знакомые вещества исчезали и появлялись новые, с иными свойствами и характерами.
Исследователи сдавили желтый фосфор, и он превратился в черное вещество с новыми физическими свойствами. Оно имело металлический блеск и с несвойственной желтому фосфору резвостью и охотой проводило электрический ток.
Однако химический анализ показал, что черное вещество состоит из тех же самых атомов фосфора, что и желтое. В результате сжатия родился новый, черный фосфор.
Ученые сжали лед и с удивлением обнаружили, что знакомый нам лед – только лишь одна из семи его разновидностей! Один из видов, сжатый высоким давлением, мог плавиться даже на морозе. А другой, стиснутый сорока тысячами атмосфер, невозможно было растопить даже в кипятке!
Так что выражение «холодный как лед» не очень-то отражает положение дел в природе. Кроме льда холодного, как это ни странно, равноправно существует и горячий.
Но особенно изумились исследователи, когда высокое давление превратило серое олово – полупроводник в белое – металл! А когда то же случилось и с теллуром, стало ясно, что это превращение не случайность, а какая-то пока скрытая закономерность.
Началась полоса неожиданностей. Ряд металлов под высоким давлением повел себя более чем странно. Некоторые из них вдруг становились хрупкими, как стекло, или мягкими, как резина, или, наоборот, твердыми, как алмаз. Кусок калия, например, сжатый до 100 тысяч атмосфер, уменьшился в размерах чуть ли не втрое, а рубидия – вдвое.
В обычных условиях цезий податливее алмаза в сотни раз. Образец из цезия можно уменьшить в размерах раз в триста по сравнению с этим кристаллом. Но при 30 тысячах атмосфер цезий вдруг становится таким крепким, что уступает алмазу очень немногим. Податливость его уменьшается в тысячи раз.
При давлении в 100 тысяч атмосфер легче всего сжимается металл барий, но и он немногим уступчивее алмаза, всего раз в десять.
Чем выше было давление, достигнутое при исследовании, чем сильнее сжималось вещество и чем теснее становилось в нем атомам, тем большим становилось число новых, неожиданных явлений.
Белые карлики
Особенно загадочным казалось то, что с ростом давления поведение самых различных элементов становилось все более схожим.
В чем же разгадка этого необыкновенного явления? – недоумевали исследователи. Как это давление уравнивает самые несхожие вещества? Полупроводники делает металлами, мягкие металлы равняет по крепости с алмазом?
Чтобы разобраться в этом, ученые просветили исследуемые вещества рентгеновыми лучами, как просвечивает врач организм больного.
При помощи рентгеновых лучей ученые воочию убедились в необыкновенной силе воздействия высокого давления. Оно способно насильственно приблизить друг к другу атомы вещества, способно сдавить их так, что исчезнут все свободные участки между ними. Такие условия существуют только в звездах. На Земле ученые не добились таких результатов. При космических давлениях молекула превращается в плотно сжатый комок атомов. При давлениях в десятки и сотни миллионов атмосфер начинается переход к так называемому «раздавленному атому».
Кто не слышал о диковинных «белых карликах» – звездах, сжатых силами тяготения до такой степени, что большинство атомных ядер, оголенных, освобожденных от электронных оболочек, как бы слипаются в один гигантский комок. Наперсток такого вещества весит столько, что его не увезет ни один локомотив.
Но ученые уверяют, что и это не предел сжатия материи. Возможно так спрессовать ее, что будут деформироваться даже ядра атомов. Ядерные частицы – нейтроны и протоны, сминая оболочки соседних частиц, вдавливаются в них, ломая и переделывая их структуру. Из такой обнаженной материи должны состоять гиперонные звезды, если они существуют. В таком состоянии материи оголены и прижаты друг к другу даже еще не изученные ядрышки протонов и нейтронов. И наперсток такого вещества весил бы десятки миллиардов тонн.