В начале было ничто. Про время, пространство, скорость и другие константы физики - Питер Эткинс
Для того, чтобы показать, как бездействие порождает слабое взаимодействие, и одновременно продемонстрировать, что слабое взаимодействие имеет то же происхождение, что и электромагнитная сила (этот симбиоз приводит нас к понятию электрослабого взаимодействия), потребовались соответствующие неабелевы локальные калибровочные преобразования; они были получены Стивеном Вайнбергом (1933–2021) и Абдусом Саламом (1926–1996), которые в 1979 году заслуженно удостоились за это Нобелевской премии.
Калибровочная инвариантность, лежащая в основе гравитации, так и остается ненайденной, и вполне возможно, что моим воззрениям – или, по крайней мере, надеждам, разделяемым многими физиками-теоретиками, – суждено остаться неподтвержденными и несбывшимися.
* * *
Давайте теперь еще раз подытожим, чего мы достигли. В этой главе я рассказал о возможном происхождении сил, первоначально классифицированных как электрические или магнитные, но при взгляде на них из следующего измерения оказавшихся проявлениями единой силы электромагнетизма. При более пристальном пространственном рассмотрении электричества и магнетизма проявились их различные аспекты; мы использовали свойства симметрии, чтобы показать, что эти аспекты могут рассматриваться как результат безразличия Природы к изменению волн путем скручивания, – в технических терминах, как результат калибровочной инвариантности. Таким образом, пустое пространство оказывается более замысловатым и тонким, чем представляется на первый взгляд. Однородность, которую оставило ему в наследство материнское Ничто, остается вне нашего поля зрения, – но она, будучи невидимой, ответственна за силы связывания и разрушения, к которым в свою очередь сводится все удивительное закулисье нашего мира.
8
Мера за меру
Происхождение фундаментальных постоянных
Фундаментальные постоянные – такие, как скорость света (c = 2,998 × 108 м/с), постоянная Планка (h = 6,626 × 10–34 Дж∙с), постоянная Больцмана (k = 1,381 × 10–23 Дж/К) и фундаментальный электрический заряд (e = 1,602 × 10–19 кулона), – играют необыкновенно важную роль в проявлениях законов природы. Эти законы, по сути, диктуют правила поведения материальных объектов, для которых заданы различные параметры, такие как масса и заряд, а фундаментальные константы определяют величину происходящих при этом изменений состояния объектов. Например, законы природы, которые мы относим к сфере частной теории относительности, подразумевают, что пространство и время по мере увеличения скорости движения смешиваются в одно целое; степень этого смешения определяется отношением данной скорости движения к скорости света. Законы электромагнетизма означают, что движение заряженной частицы отклоняется электрическим полем, а фундаментальный заряд определяет степень этого отклонения при заданной напряженности поля. Согласно законам квантовой механики, энергия осциллятора, как масса пружины или маятника, может подниматься по лестнице квантованных значений, а постоянная Планка определяет расстояния между ступеньками этой лестницы. Если бы эта постоянная была равна нулю, между ступеньками не было бы никаких промежутков, и энергию осциллятора можно было бы увеличивать непрерывно; то, что на деле постоянная Планка так мала (порядка 10–34), означает, что ступеньки лестницы и в самом деле очень близки, настолько, что в наших повседневных маятниках и колеблющихся пружинах мы никаких разделений между значениями энергии не ощущаем. Но они есть.
Идут жаркие споры о том, насколько случайны те значения постоянных, которыми мы сейчас располагаем, – ведь даже малые отклонения от этих значений, как утверждается, имели бы катастрофические последствия для возникновения жизни, сознания и способности раздумывать над тем, почему же постоянные имеют столь благоприятные значения. При чуть-чуть отличающихся постоянных звезды не могли бы образовываться, а если бы они все же формировались, то сжигали бы свое горючее так быстро, что не оставалось бы времени для эволюции жизни.
По моему мнению, есть два класса фундаментальных постоянных: те, которых не существует, и существующие. Как и можно было подозревать, значения тех постоянных, которых не существует, объяснить гораздо проще, чем существующих. Первые – следствие человеческой деятельности. Они возникли в ходе интеллектуальной истории человечества как разумные, но лишенные фундаментальной корректности средства измерения и описания объектов (например, длины в метрах и времени в секундах). Второй же вид постоянных, те, что реально существуют в фундаментальном смысле, а следовательно, и являются истинно фундаментальными постоянными, – это сопряженные постоянные, которые суммируют силы взаимодействия между сущностями, такие, как сила, действующая между электрическими зарядами, сила взаимодействия электрического заряда с электромагнитным полем, ядерные силы, связывающие друг с другом элементарные частицы и действующие внутри структур, которые мы называем ядрами атомов. К ним относится также и гравитационная постоянная (G = 6,673 × 10–11Дж∙м/кг 2), устанавливающая напряженность гравитационного поля, созданного массивным телом, и следовательно, объясняющая орбиты планет, обращающихся вокруг звезд, механизм формирования галактик и ускорение падающего яблока.
Хотя в таблицах фундаментальных постоянных они выражены в определенных единицах, как, например, скорость света, равная громадному количеству метров в секунду, на деле они вообще-то не должны выражаться в каких-либо единицах. Иначе говоря, фундаментальные постоянные, которых не существует, все должны иметь значение 1 (например, c = 1, а не c = 2,998 × 108 м/с), а те фундаментальные постоянные, которые существуют, лучше всего выражать таким образом, чтобы для этого тоже не нужны были никакие единицы. Как я сейчас объясню, вместо того, чтобы говорить, что фундаментальный заряд равен e = 1,602 × 10–19 Кл, его лучше всего выражать величиной 1/137. Похожим образом и другие реальные фундаментальные постоянные лучше выражать различными безразмерными числами. Вскоре станет понятно, почему я могу объяснить, откуда берется значение 1, но не могу сделать того же для 1/137. Сейчас мы и правда не представляем себе, откуда взялись числа вроде 1/137, и я не собираюсь притворяться, что знаю это хоть немного лучше, чем кто-либо еще. Жаль, что это так: ведь именно эти числа управляют нашим существованием и самим рождением способности мыслить: окажись на месте 1/137, к примеру, 1/136 или 1/138, догадываться о смысле этих чисел было бы, возможно, некому.
Эти замечания надо развить, чтобы объяснить вам, что я имею в виду и почему считаю, что есть два класса постоянных. Не буду разбирать все фундаментальные постоянные (одних только важных есть около дюжины, да еще множество их комбинаций, с которыми часто обращаются так, будто и они того же высшего ранга). Для обсуждения их происхождения я отберу горсточку тех, которые считаю истинно фундаментальными.
* * *
Начну я с самой, может быть, важной фундаментальной постоянной из всех – скорости света c (от celeritas). Я отношу ее к столь высокому рангу потому, что, хоть ее и не существует, она управляет структурой пространства-времени – ареной всех действий.
Пространство – не только то, что