Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн
В 1960-х гг. к ученым, в частности к Джозефу Веберу, пришло понимание того, что возможно, в принципе, детектировать на Земле прибытие гравитационных волн, испущенных в далеких концах Вселенной. Гравитационная волна – это волна деформации пространственно-временной геометрии, распространяющаяся от источника со скоростью света. Поскольку пространственно-временное желе обладает огромной жесткостью, все мыслимые источники (включая самые мощные, такие как две сливающиеся черные дыры) создают крайне малые деформации пространственно-временной геометрии. Однако для лучшего понимания того, как могут выглядеть «волны деформации геометрии», мы последуем Георгию Гамову{89} и представим себе гравитационные волны такой большой амплитуды, чтобы человек мог их воспринимать непосредственно. На Земле мы привыкли использовать для описания окружающего пространства евклидову геометрию, где работает теорема Пифагора, притом для треугольников любого размера, и где сумма углов треугольника равна сумме двух прямых углов. Исходя из такой «недеформированной» или, как говорят, «плоской» ситуации, давайте проследим, как Гамов описывает внезапное прибытие гигантской волны деформации геометрии на британский морской курорт.
Профессор – ученый с седой бородой и мистер Томпкинс расположились в холле отеля, чтобы пообсуждать общую теорию относительности, в то время как Мауд, дочь профессора, проявляет свои художественные таланты на пляже, расположенном невдалеке. И вдруг:
«Пока профессор вел беседу, вокруг начали происходить очень необычные вещи: одна часть холла вдруг стала чрезвычайно маленькой, сжав в себе все содержимое, тогда как другая часть выросла до такой степени, что мистеру Томпкинсу показалось, будто целая Вселенная могла бы теперь в ней поместится. Ужасная мысль промелькнула в его голове: что если та часть побережья, где рисовала мисс Мауд, оторвалась от остальной Вселенной и он больше никогда не сможет ее увидеть!»
Теоретические расчеты в общей теории относительности, касающиеся испускания гравитационных волн известными (или предполагаемыми) космическими источниками, показали несбыточность того, что так взволновало мистера Томпкинса. На деле любая точка пространства в любой момент времени пронизана волнами геометрических деформаций. Но амплитуда этих волн невообразимо мала. Самые большие геометрические деформации, которые мы могли бы наблюдать на Земле (один или два раза в год), имеют амплитуду порядка 0,000 000 000 000 000 000 001, или 10–21. Это значит, что прибытие такой волны в холл отеля мистера Томпкинса и профессора сожмет ширину холла на 0,000 000 000 000 000 0001 % и вытянет длину в том же отношении. Ясно, что такие малые эффекты не видны невооруженным глазом!
Физик-экспериментатор Джозеф Вебер был в конце 1950-х гг. первым, кто сформировал представление о современных технологиях, способных обнаружить столь малые деформации. Сегодня, спустя полвека совершенствования техники эксперимента, можно рассчитывать на детектирование гравитационных волн в ближайшие годы. В частности, Соединенные Штаты (проект LIGO) и Европа (проекты VIRGO и GEO) имеют недавно построенные гигантские интерферометры с плечом длиной в километры, которые потенциально способны обнаружить такие деформации{90}. Огромные усилия в разработке технологий были подкреплены интенсивной теоретической работой международного коллектива по вычислению параметров гравитационных волн, испускаемых различными космическими источниками.
Например, один из самых изученных и самых многообещающих типов источников – система из двух «сливающихся» черных дыр, вращающихся вокруг друг друга. Выше мы говорили, что распространение гравитационного взаимодействия между двумя телами системы со скоростью света приводит к постепенному увеличению орбитальной частоты, что само по себе связано со сближением тел. Этот эффект был экспериментально подтвержден для нескольких двойных пульсаров. После сотен миллионов лет сближения два тела оказываются так близко, что начинают вращаться относительно друг друга со скоростью, близкой к скорости света. Тогда их сближение становится все более и более заметным, орбиты приобретают форму двух переплетенных спиралей, и это продолжается до тех пор, пока эйнштейновское гравитационное взаимодействие не станет столь сильным, что объекты «упадут» друг на друга. В случае двух черных дыр это падение по спирали приводит к их «слиянию» в одну более массивную быстро вращающуюся черную дыру. Если бы мистер Томпкинс оказался в непосредственной близости от двух сливающихся черных дыр, он мог бы стать свидетелем искривления геометрии на относительную величину порядка 10 %, что вполне можно наблюдать невооруженным глазом{91}. Однако, поскольку такие системы достаточно редки во Вселенной, на Земле можно обнаружить лишь сигналы, испущенные системами из очень далеких галактик, расположенных за миллионы световых лет. И потому, учитывая, что амплитуда гравитационных волн во время распространения спадает обратно пропорционально расстоянию от источника, на Земле можно зафиксировать только миниатюрные деформации порядка указанной выше величины.
Размышления обо всем
Другим примером Игры в Мир, нашедшим свое математическое описание в свете теории Эйнштейна, является космология. Термин «космология» существовал и до Эйнштейна, разумеется, но Эйнштейн вдохнул в это слово новый смысл, несравненно более глубокий, нежели ранее. Для понимания, почему космологическое, т. е. глобальное, видение реальности было центральным аспектом его видения общей теории относительности, приведем цитату из письма к Карлу Шварцшильду от 9 января 1916 г., в котором он резюмирует то, что составляет суть этой теории в его понимании:
«Существенная черта моей теории состоит в том, что никакое свойство не может быть приписано пространству самому по себе. Это можно выразить в виде шутки такого толка: если из мира вдруг исчезнет все содержимое, то, следуя Ньютону, останется галилеево инерциальное пространство, тогда как в моем понимании ничего не останется».
Нам потребуется немного уточнить это утверждение, поскольку в настоящее время известно, что общая теория относительности допускает также решения в отсутствие материи. При этом не одно только пространство Минковского является таким решением{92}, среди прочего существует бесконечное число решений, описывающих вибрационные волны пустого пространства-времени, которые приходят и уходят в бесконечность, не будучи «порождением» какой-либо материи. Силу теории Эйнштейна можно оценить тем, что именно она привела к идее о возможности таких решений. Эйнштейн первым начал думать о силе-материи и пространстве-времени как о неделимом целом. Это неделимое целое имеет название «космос» (в современном, эйнштейновском смысле).
В феврале 1917 г. Эйнштейн написал статью, которая заложила фундамент космологии XX в. и дала первую математическую модель космоса. Трудно переоценить важность концептуального прорыва, который представляет эта статья. Несмотря на то что некоторые современные авторы иногда принижают значимость этой работы, указывая, что в ней была «упущена возможность» предсказания расширения Вселенной. В самом деле, среди прочих упрощающих гипотез Эйнштейн предположил, что космос статичен. Когда же он нашел, что эта гипотеза несовместима с остальными (однородность пространства; замкнутость Вселенной с постоянной положительной кривизной; присутствие равномерно распределенной материи с положительной массой-энергией, но без напряжений), он решил исправить недавно полученные уравнения теории относительности, добавив слагаемое, получившее название «космологическая постоянная». Добавление космологической постоянной позволило ему написать первую единую модель реальности: статический космос Эйнштейна. Вскоре другие ученые, а именно голландец Виллем де Ситтер и русский Александр Фридман, поняли, что возможны также другие модели космоса и что космос, вообще говоря, может быть не только «искривлен пространственно», но и «искривлен во времени» или, другими словами, может расширяться или сжиматься{93}. Стало ясно, что модификация теории относительности посредством космологической постоянной не является необходимой, если считать космос наполненным материей и искривленным во времени.
Всем известны замечательные плоды такой теории космоса: наблюдения американских астрономов Весто Слайфера и Эдвина Хаббла вкупе с теоретическими работами Жоржа Леметра и Георгия Гамова привели к модели Большого взрыва, которая была подтверждена открытием фонового космического излучения и объяснением плотности космического распределения легких элементов (дейтерий, гелий, литий). Эта модель получила идейное завершение с открытием «первичной фазы инфляции» и того недавно установленного факта, что космос как раз вошел в новую фазу инфляции. За дополнительной информацией мы отсылаем читателя к многочисленной литературе, посвященной описанию современной космологии и ее истоков{94}.