Питер Уайброу - Мозг: Тонкая настройка. Наша жизнь с точки зрения нейронауки
Описанный цикл восприятия, обучения и действий служит основным двигателем мышления как в процессе его развития, так и в зрелом состоянии; именно этот цикл обеспечивает непрерывную обработку информации, поступающей от наших пяти чувств, так чтобы предпринимаемые на основе интуиции или сознательного выбора действия лучше всего соответствовали имеющимся возможностям.
Итак, нейронные сети обучения и памяти, участвующие в цикле «восприятие – действие», поддерживают сбор информации и обеспечивают принятие решений. Эти сети организованы иерархически, и их сложность увеличивается по мере созревания головного мозга. На ранних стадиях развития мозга циклы, имеющие решающее значение для выживания (например, способность младенца тянуться к груди и сосать), возникали в ходе естественного отбора. Хоакин Фустер назвал эти важнейшие сети филетическими, от слова филогения – изучение эволюционных взаимоотношений. Такие рефлекторные поведенческие реакции генетически запрограммированы, но при этом все равно осуществляются через цикл «восприятие – действие». Если конкретизировать приведенный мной пример, у питающегося младенца сенсорные восприятия материнского запаха, прикосновения к груди, вкуса молока и звука дыхания матери запускают двигательную программу действия сосания. Во второй части этой книги я подробнее расскажу о том, что более тонкая настройка такого инстинктивного когнита начинается сразу же после рождения, когда мать и ребенок на основании опыта учатся друг у друга и между ними возникает взаимная нежная привязанность, в конечном итоге служащая основой доверия. Сенсорные сигналы смешиваются в разуме ребенка, создавая уникальную сеть памяти, означающую «мать». Если же эта быстро закрепившаяся схема не подтверждается – например, к ребенку подходит чужой человек, то запускается иная моторная программа, соответствующая беспокойству и плачу.
В первые месяцы жизни мозг ребенка развивается очень быстро, ежедневно интегрируя информацию, поступающую от органов чувств, и очень скоро это приводит к освоению новых двигательных навыков. Если мы вернемся к приведенному во второй главе примеру с малышом в кроватке, хватающимся за разноцветный мячик, то увидим, что цикл «восприятие – действие» является основой привычки и интуитивных мыслительных процессов. Ребенок фактически учит сам себя, методом проб и ошибок настраивая свой цикл восприятия и действий, пока не достигнет совершенства в смыкании пальцев в нужный момент, после чего способность становится автоматической.
В отличие от филетической, заранее запрограммированной памяти новорожденного, учащегося сосать, нейронные сети, поддерживающие различные приобретенные и вошедшие в привычку типы поведения – распознавание лиц, питание, способность ходить, социальные взаимодействия и т. д., менее подвержены генетическому контролю. Специфическое обучение в подобных случаях, по сути, управляется силой стимула, несущего информацию. Наиболее важную роль в развитии и активности нейронной сети играют такие факторы, как временнáя близость стимулов, их повторяемость и эмоциональная окраска – как, например, в случае развития речи. Здесь человек обладает огромным преимуществом благодаря уникальной емкости коры больших полушарий. При рождении эта ассоциативная кора, как ее иногда называют, содержит эквивалент множества гигабайтов компьютерной памяти, которой еще только предстоит быть заполненной программами. По мере созревания мозга в нем улучшается изоляция аксонов, служащих суперскоростными магистралями для передачи электрических нервных импульсов, что повышает эффективность передачи информации. «Голый» аксон проводит импульсы медленно, со скоростью примерно 9 м/с, в то время как в аксоне, покрытом так называемой миелиновой (жировой) оболочкой{113}, скорость может возрастать до 120 м/с – скорости торнадо.
Говоря компьютерным языком, миелин позволяет увеличить «пропускную способность», ускоряя передачу информации из одной локальной сети мозга в другую. Однако на это усовершенствование нужно время. Исследования изображений, полученных при сканировании, показывают, что в онтогенезе головного мозга, то есть в процессе его индивидуального развития и созревания, миелинизация происходит по генетически запрограммированному временнóму графику. Так, в областях коры, ответственных за движения конечностей, необходимые для того, чтобы научиться ходить, а также в участках, получающих сигналы от важнейших органов чувств – зрения и слуха, миелинизация происходит гораздо раньше, чем в ассоциативной коре, созревание которой продолжается в подростковом и юношеском возрасте, способствуя совершенствованию абстрактного мышления и сложного социального поведения. В полностью развитом человеческом мозге миелиновые оболочки, называемые «белым веществом» из-за бледной окраски на свежих срезах, отличающейся от розовато-серых областей скопления тел нервных клеток, составляют около 42 % общего объема мозга. Таким образом, если снова воспользоваться компьютерной терминологией, в зрелом головном мозге мощный процессор (много мегагерцев) соединен с памятью огромного объема (много гигабайтов).
Это усовершенствование имеет далеко идущие последствия. По мере развития фронтальной коры и повышения миелинизации и эффективности проводящих путей в ассоциативных зонах растущий ребенок получает возможность реагировать на стимулы не только физическими действиями. Все более улучшается его способность к концептуальному мышлению, возрастает интеллектуальная независимость. Ключом к такому освобождению от мира чувств становится речь, посредством которой мысли и эмоции могут быть переданы окружающим. Словарный запас возрастает в геометрической прогрессии, символы и воображение начинают играть не менее важную роль, чем поток ощущений от органов чувств. Эмоциональная привязанность к другим людям как фактор, управляющий поведением, все более заменяется креативным разумом – автономной формой обработки информации, сфокусированной на будущем, позволяющей ставить цели, намечать проекты и принимать решения, выбирая из возможных вариантов действий. Такая деятельность, кодируемая языком, развивается на базе знаний, полученных (сознательно и бессознательно) в процессе непрерывного взаимодействия с окружающим миром.
Неудивительно, что развитие таких способностей отражается в изменениях связей между функциональными нейронными сетями мозга, хотя доказательства этого ученые смогли получить лишь недавно. Как я говорил, обсуждая во второй главе формирование привычек, мы уже достаточно давно знаем, что мозг ведет постоянный диалог сам с собой даже в состоянии покоя. Однако сегодня технологии МРТ дали нам возможность исследовать даже у маленьких детей физиологические структуры, связанные с этим внутренним общением, и следить за тем, как они изменяются в ходе индивидуального развития.
На то, что нейронные сети нашего мозга постоянно и активно работают, не вовлекая в эту деятельность сознание, ученые обратили внимание в начале 1990-х гг., когда Маркус Райхл из Медицинской школы Университета Вашингтона в Сент-Луисе (штат Миссури) сообщил, что уровень кровоснабжения мозга, измеряемый методами ПЭТ и фМРТ, падает, когда человек сознательно сосредотачивается на выполнении визуальной задачи. Эти результаты оказались сюрпризом для исследователей, предположивших, «что, скорее всего, функции мозга куда шире, чем это можно показать в экспериментах, манипулирующих (сознательными) потребностями (испытуемых)». По-видимому, в состоянии «покоя» мозг на самом деле вовсе не отдыхает{114}. Профессор Райхл с коллегами назвали эту бурную нейронную активность мозга в «покое» деятельностью по умолчанию и предположили, что она является свидетельством постоянной «независимой от стимулов» активности нейронных центров мозга.
Последовавшие за этим исследования на людях в состоянии покоя – испытуемые спокойно лежали в сканирующей камере и думали о своем – доказали наличие этой внутренней организованной активности мозга. Кроме того, подтвердилось предположение о том, что связи между функциональными нейронными сетями мозга меняются с возрастом{115}. Однако в подростковом и молодом возрасте, когда происходит миелинизация нейронных «трасс», коммуникация между основными узлами управляется чисто функциональными задачами. Также в этом возрастном промежутке малоиспользуемые нейронные пути «обрезаются», то есть уничтожаются в пользу тех сетей, которые необходимы для выполнения функций взрослого организма. Иными словами, более необходимые сети сохраняются за счет тех, которые в меньшей степени нужны для взаимодействия с окружающим миром. Таким образом, схема нейронных сетей настраивается и отлаживается в соответствии с возрастом и опытом.