Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать
А теперь перейдем к ключевой идее. Взглянем еще раз на формулу для расстояния в пространстве-времени: s² = (ct)² – x². Оно будет наибольшим, если следовать по пути, на котором x = 0. Все прочие пути должны быть короче, поскольку мы обязаны выполнять вычитание (всегда положительной) величины. Находящийся на Земле близнец движется вдоль оси времени с близким к нулю перемещением в пространстве, поэтому его путь должен быть самым длинным возможным путем. Фактически это просто другой способ сказать то, что мы уже знаем: близнец, оставшийся на Земле, путешествует во времени с максимально возможной скоростью, а потому стареет быстрее.
Пока что наше пояснение давалось с точки зрения земного близнеца. Чтобы полностью убедиться в том, что никакого парадокса тут нет, давайте рассмотрим ситуацию с точки зрения близнеца-астронавта. В его понимании путешествует близнец, оставшийся на Земле, в то время как он сам движется вдоль собственной временной оси. Создается впечатление, что здесь снова наблюдается парадокс: поскольку астронавт покоится относительно своего корабля, получается, что он движется с максимальной скоростью во времени, а значит, должен стареть быстрее. Однако есть один тонкий момент. Уравнение для расстояния неприменимо, если мы намерены использовать часы и линейку близнеца-астронавта. Точнее говоря, это уравнение не будет работать, когда астронавт подвергнется ускорению, разворачивающему космический корабль обратно к Земле. Почему? Аргументы, использованные нами при выведении уравнения, кажутся неопровержимыми. Но если применить ускоряющуюся систему часов и линеек для выполнения измерений (как вынужден поступить близнец-астронавт), то выдвинутое нами предположение о неизменности пространства-времени и о том, что оно одинаково в любом месте, окажется неверным. Во время ускорения близнец-астронавт будет придавлен к своему креслу, как вас вдавливает в кресло автомобиля при нажатии педали газа. В начале движения тем самым выделяется одно из направлений в пространстве: направление ускорения. В уравнении расстояния следует учесть наличие этой силы. Мы не будем излагать вам все математические детали, но итог следующий: когда корабль включает двигатели для разворота, близнец на Земле стареет быстрее астронавта, и это полностью компенсирует тот факт, что он старел медленнее во время фазы равномерного движения. Парадокса не существует.
Мы не можем устоять против соблазна привести кое-какие числовые данные. Большое космическое путешествие наиболее комфортно на корабле, который движется с ускорением, равным одному g, то есть когда путешественникам внутри корабля будет казаться, что они весят ровно столько же, сколько и на Земле. Итак, представим путешествие, в котором десять лет происходит разгон с данным ускорением, десять лет – торможение, после чего корабль разворачивается и полет повторяется в противоположном направлении – десять лет ускорения, десять лет торможения. Все путешествие занимает 40 лет. Сколько же лет при этом пройдет на Земле? Математические выкладки выходят за рамки нашей книги, так что мы просто сообщим окончательный результат: около 59 тысяч лет!
Мы тоже совершили замечательное путешествие по миру пространства-времени и надеемся, что вы следовали за нами. Теперь мы готовы перейти непосредственно к формуле E = mc². Вооруженные пространством-временем и инвариантным расстоянием в пространстве-времени, зададим простой, но очень важный вопрос: существуют ли другие инвариантные величины, которые тоже описывают свойства реальных объектов в реальном мире? Конечно же, важны не только расстояния. Объекты имеют массу, могут быть твердыми или мягкими, горячими или холодными, жидкими или газообразными. Поскольку все объекты находятся в пространстве-времени, можно ли описать весь мир инвариантным способом? В следующей главе мы узнаем, что да и что это влечет за собой очень глубокие последствия, ибо это путь, ведущий нас непосредственно к уравнению E = mc².
5. Почему же E = mc²
В предыдущей главе мы продемонстрировали, что объединение пространства и времени в одну концепцию пространственно-временного континуума оказалось хорошей идеей. Основная мысль всех наших исследований состояла в том, что расстояние в пространстве-времени – инвариантная величина, а значит, во всей Вселенной существует консенсус в отношении длины пути, пройденного в пространстве-времени. Эту величину можно было бы даже рассматривать как определяющую характеристику пространства-времени. Нам удалось заново открыть теорию Эйнштейна, но только при условии, что мы будем трактовать предельную космическую скорость c как скорость света. Мы еще не доказали, что c имеет отношение к скорости света, но в этой главе проанализируем значение c гораздо глубже. В определенном смысле мы уже начали раскрывать тайну скорости света. Поскольку эта величина присутствует в формуле E = mc², может показаться, что сам свет – важный элемент структуры Вселенной. Но в контексте пространства-времени это не так. Демократия восстановлена в том смысле, что в пространстве-времени все может перемещаться с одной и той же скоростью c, в том числе вы, планета Земля, Солнце и далекие галактики. Просто свет использует всю квоту скорости в пространстве-времени на перемещение в пространстве и потому движется в пространстве с предельной космической скоростью. Значит, мнимая уникальность света – всего лишь следствие склонности человека воспринимать время и пространство как разные вещи. В действительности существует причина, по которой свет вынужден использовать свою квоту скорости на движение в пространстве, и эта причина непосредственно связана с нашей целью – понять, почему E = mc².
E = mc² – это уравнение. Мы изо всех сил старались обратить внимание читателей на то, что для физика уравнения – весьма удобный и эффективный инструмент описания взаимосвязей между различными объектами. В случае E = mc² в качестве таких объектов выступают энергия (E), масса (m) и скорость света (c). В более общем смысле элементы уравнения могут представлять либо реальные физические объекты, такие как волны или электроны, либо более абстрактные понятия, такие как энергия, масса или расстояние в пространстве-времени. Как мы уже видели в предыдущих главах, физики весьма требовательно относятся к фундаментальным уравнениям в том смысле, что, по их мнению, их должны принять все без исключения во Вселенной, независимо от местоположения, скорости и направления движения. Это вполне обоснованное требование, хотя в какой-то момент в будущем мы можем обнаружить, что придерживаться его невозможно. Такой поворот событий поверг бы в шок любого современного физика, поскольку эта идея оказалась на удивление плодотворной с момента рождения современной науки в XVII столетии.
Хороший ученый всегда должен осознавать тот факт, что природа может без колебаний повергнуть нас в шок, а реальность такова, какова есть. Но пока все, что мы можем сказать, это что мечта остается неизменной. Мы уже исследовали идею всеобщего согласия, представив ее достаточно просто: законы физики должны быть сформулированы с использованием инвариантных величин. Все известные нам фундаментальные физические уравнения соответствуют этому требованию, поскольку отображают взаимосвязи между объектами в пространстве-времени. Что именно это означает? Что представляет собой объект, существующий в пространстве-времени? Можно предположить, что все сущее находится в пространстве-времени, поэтому, когда нам необходимо составить уравнение, например, описывающее взаимодействие между объектом и окружающей средой, мы должны найти способ выразить это в математической форме с помощью инвариантных величин. Только так можно достичь всеобщего согласия.
Хорошим примером может послужить длина куска веревки. Исходя из того, что нам уже известно, можно прийти к выводу, что хотя кусок веревки – это реальный объект, нам следует избегать написания уравнения, отображающего только его длину в пространстве. Пожалуй, нам нужно быть смелее и говорить о длине куска веревки в пространстве-времени, как того требует теория пространственно-временного континуума. Безусловно, физикам, решающим сугубо земные задачи, удобно использовать уравнения, отображающие взаимоотношения между длинами в пространстве и другими вещами подобного рода (инженеры считают такой подход весьма полезным). Уравнение, в котором используется только длина в пространстве или время, измеряемое с помощью часов, вполне корректно рассматривать как допустимое приближение, если речь идет об объектах, движущихся очень медленно по сравнению с предельной космической скоростью, что во многих случаях (хотя и не всегда) верно в контексте решения повседневных инженерных задач. Пример, доказывающий, что это не всегда так, – ускоритель частиц, в котором субатомные частицы движутся по кругу со скоростью, близкой к скорости света, и в результате живут дольше своих покоящихся двойников. Если бы следствия теории Эйнштейна не принимались во внимание, ускорители частиц просто не работали бы должным образом. Фундаментальная физика сводится к поиску фундаментальных уравнений, а это подразумевает необходимость работать исключительно с математическими представлениями объектов, имеющими универсальное значение в пространственно-временном континууме. Прежнее представление о пространстве и времени как о двух отдельных концепциях приводит к формированию картины мира, напоминающей попытку смотреть спектакль, наблюдая только за тенями, оставленными на сцене светом прожекторов. На самом деле в спектакле играют трехмерные актеры, которые передвигаются по сцене, а тени – всего лишь двумерная проекция спектакля. После открытия концепции пространства-времени мы наконец можем оторвать взгляд от этих теней.