РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
Теперь мы возьмем те же сделки, только будем использовать модель оценки фондовых опционов Блэка-Шоулса (подробно об этом будет рассказано в главе 5), и преобразуем входные цены в теоретические цены опционов. Входные данные для ценовой модели будут следующими: историческая волатильность, рассчитанная на основе 20 дней (расчет исторической волатильности также приводится в главе 5), безрисковая ставка 6% и 260,8875 дней (это среднее число рабочих дней в году). Далее мы допустим, что покупаем опционы, когда остается ровно 0,5 года до даты их исполнения (6 месяцев), и что они «при деньгах». Другими словами, существуют цены исполнения, в точности соответствующие цене входа на рынок. Покупка колл-опциона, когда система в длинной позиции по базовому инструменту, и пут-опциона, когда система в короткой позиции по базовому инструменту, с учетом параметров упомянутой модели оценки опционов, даст в результате следующий поток сделок:
Дата Позиция Вход P&L Полный капитал Базовый инструмент Действие 870106 Длинная 9,623 0 0 241,07 Длинный колл 870414 Фиксация 35,47 25,846 25,846 276,54 870414 Длинная 15,428 0 25,846 276,54 Длинный пут 870507 Фиксация 8,792 -6,637 19,21 292,28 870507 Длинная 17,116 0 19,21 292,28 Длинный колл 870904 Фиксация 21,242 4,126 23,336 313,47 870904 Длинная 14,957 0 23,336 313,47 Длинный пут 871001 Фиксация 10,844 -4,113 19,223 320,67 871001 Длинная 15,797 0 19,223 320,67 Длинный колл 871012 Фиксация 9,374 -6,423 12,8 302,81 871012 Длинная 16,839 0 12,8 302,81 Длинный пут 871221 Фиксация 61,013 44,173 56,974 242,94 871221 Длинная 23 0 56,974 242,94 Длинный коллЕсли рассчитать оптимальное f по этому потоку сделок, мы придем к выводу, что соответствующее среднее геометрическое (фактор роста на нашем счете за игру) равно 1,2166. Сравните его со средним геометрическим при оптимальном f для базового инструмента 1,12445. Разница огромная. Так как мы получили всего б сделок, то можно возвести каждое среднее геометрическое в 6-ую степень для определения TWR. Это даст TWR по базовому инструменту 2,02 против TWR по опционам 3,24. Преобразуем TWR в процент прибыли от нашего начального счета. Мы получим 102% прибыли при торговле по базовому инструменту и 224% прибыли при торговле опционами. Опционы в рассмотренном случае предпочтительнее, что подтверждается фундаментальным уравнением торговли.
Длинные позиции по опционам могут быть менее эффективными, чем длинные позиции по базовому инструменту. Чтобы не сделать здесь ошибку, торговые стратегии (а также выбор серии опционов) необходимо рассматривать с точки зрения фундаментального уравнения торговли.
Как видите, фундаментальное уравнение торговли можно использовать для улучшения торговли. Улучшения могут заключаться в изменении жесткости приказов на закрытие убыточных позиций (stop-loss приказов), в установлении целей и так далее. Эти изменения могут быть вызваны неэффективностью текущей торговли, а также неэффективностью торговой методологии.
Надеюсь, вы теперь понимаете, что компьютер неверно используется большинством трейдеров. Оптимизация, поиск систем и значений параметров, которые бы заработали больше всего денег на прошлых данных,— по сути пустая трата времени. Вам надо получить систему, которая будет прибыльна в будущем. С помощью грамотного управления капиталом вы сможете «выжать» максимум из системы, которая лишь минимально прибыльна. Прибыльность системы в большей степени определяется управлением капиталом, которое вы применяете к системе, чем самой системой. Вот почему вы должны строить свои системы (или торговые методы, если вы настроены против механических систем), будучи уверенными в том, что они останутся прибыльными (даже если только минимально прибыльными) в будущем. Помните, что этого нельзя достичь путем ограничения степеней свободы системы или метода. При разработке вашей системы или метода помните также о фундаментальном уравнении торговли. Оно будет вести вас в верном направлении в отношении эффективности системы или метода. Когда оно будет использоваться вместе с принципом «неограничения степеней свободы», вы получите метод или систему и сможете применить различные техники управления деньгами. Использование этих методов управления деньгами, будь они эмпирическими, которые описываются в этой главе, или параметрическими (ими мы займемся в главе 3), определит степень прибыльности вашего метода или системы.
Глава 2
Характеристики торговли фиксированной долей и полезные методы
Мы видели, что оптимальный рост счета достигается посредством оптимального f. Это верно независимо от инструмента, используемого в торговле. Работаем ли мы на рынке фьючерсов, акций или опционов, управляем ли группой трейдеров, при оптимальном f достигается оптимальный рост, а поставленная цель — в кратчайшее время. Мы также узнали, как с эмпирической точки зрения объединить различные рыночные системы на их оптимальных уровнях f в оптимальный портфель, то есть как скомбинировать оптимальное f и теорию портфеля, используя прошлые данные для определения весов компонентов в оптимальном портфеле. Далее мы рассмотрим важные характеристики торговли фиксированной долей.
Оптимальное F для начинающих трейдеров с небольшими капиталами
Каким образом при небольшом счете, который дает возможность торговать только 1 контрактом, использовать подход оптимального f? Одно из предложений заключается в том, чтобы торговать 1 контрактом, учитывая не только оптимальное ib долларах (наибольший проигрыш / -f), но также проигрыш и маржу (залог). Сумма средств, отведенная под первый контракт, должна быть больше суммы оптимального ib долларах или маржи плюс максимальный исторический проигрыш (на основе 1 единицы):
где А =сумма в долларах, отведенная под первый контракт;
f =оптимальное f (от 0 до 1);
Маржа =первоначальная спекулятивная маржа для данного контрак та (залоговые средства, необходимые для открытия одного контракта);
Проигрыш =максимальный исторический совокупный проигрыш;
МАХ {} = максимальное значение выражения в скобках;
ABS() = функция абсолютного значения.
При такой процедуре вы сможете пережить максимальный проигрыш и все еще иметь достаточно денег для следующей попытки. Хотя мы не можем быть уверены, что в будущем проигрыш наихудшего случая не превысит исторический проигрыш наихудшего случая, маловероятно, чтобы мы начали торговлю сразу с нового исторического проигрыша. Трейдер, использующий эту технику, каждый день должен вычитать сумму, полученную с помощью уравнения (2.01), из своего баланса. Остаток следует разделить на величину (наибольший проигрыш / -f). Полученный ответ следует округлить в меньшую сторону и прибавить единицу, таким образом, мы получим число контрактов для торговли.
Прояснить ситуацию поможет пример. Допустим, у нас есть система, где оптимальное f= 0,4, наибольший исторический проигрыш равен -3000 долларов, максимальный совокупный проигрыш был -6000 долларов, а залог равен 2500 долларов. Используя уравнение (2.01), мы получим:
А = МАХ {(-$3000 / 0,4), ($2500 + ABS(-$6000))}
= MAX {($7500), ($2500 + $6000)}
= МАХ {$7500, $8500} == $8500
Таким образом, нам следует отвести 8500 долларов под первый контракт. Теперь допустим, что на нашем счете 22 500 долларов. Поэтому мы вычтем сумму под первый контракт из баланса: $22 500 - $8500 = $14 000 Затем разделим эту сумму на оптимальное f в долларах: $14 000/$7500 =1,867 Округлим полученный результат в меньшую сторону до ближайшего целого числа: INT (1,867)=1 Затем добавим 1 к полученному результату (1 контракт уже обеспечен 8500 долларами, которые мы вычли из баланса):1+1=2 Таким образом, мы будем торговать 2 контрактами. Если бы мы торговали на уровне оптимального f ($7500 на 1 контракт), то торговали бы 3 контрактами (22 500 / 7500). Как видите, этот метод можно использовать независимо от того, насколько велик баланс счета (однако чем больше баланс, тем ближе будут результаты). Более того, чем больше баланс, тем менее вероятно, что вы в конце концов получите проигрыш, после которого сможете торговать только 1 контрактом. Трейдерам с небольшими счетами или тем, кто только начинает торговать, следует использовать этот подход.