Kniga-Online.club

Илья Рухленко - Что ответить дарвинисту? Часть II

Читать бесплатно Илья Рухленко - Что ответить дарвинисту? Часть II. Жанр: Прочая научная литература издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

7) Расцветом фитопланктона.

Много внимания авторы уделяют постепенно возрастающей солености воды Аральского моря, что приводит к вымиранию сначала множества пресноводных видов, а затем и солоноватоводных, с заменой их чисто морскими и континентальными галофильными видами.

И вот в таких условиях конкретно для ракушки Cerastoderma (по утверждению авторов) наступаёт «звёздный час». Во-первых, эта ракушка демонстрирует взрыв внутривидовой изменчивости. То есть, начинает наблюдаться множество форм этого моллюска с изменениями по целому ряду морфологических признаков. Во-вторых, из моря исчезают основные «сдерживатели» популяций ракушки Cerastoderma – моллюски других родов, Dreissena и Hypanis. Hypanis являлся конкурентом Cerastoderma – так же как и Cerastoderma, он «сидел» практически целиком погруженным в грунт, и отфильтровывал взвешенные в воде питательные вещества. То есть, использовал ту же пищу, которой питалась и Cerastoderma. Таким образом, само существование Hypanis сдерживало численность Cerastoderma.

А ракушка Dreissena поступала с Cerastoderma еще жестче – стоило какой-нибудь Cerastoderma высунуть свою раковину из грунта, как на неё оседали личинки Dreissena и закреплялись на ней. Потому что дрейссенам для закрепления нужна какая-нибудь твердая основа. В ходе дальнейшего роста, дрейссены под тяжестью собственного веса постепенно «топили» Cerastoderma в грунте, попутно затрудняя им питание еще и за счет оплетания их своими прикрепляющими нитями (биссусом).[17]

Таким образом, в исконных экосистемах Арала распространение Cerastoderma сдерживалось доминированием дрейссен и Hypanis.

Однако в связи с повышением солености воды Аральского моря, дрейссены и Hypanis вымирают за относительно короткое время. А Cerastoderma не вымирают, потому что возросшая соленость воды пока еще их устраивает (находится в тех пределах, которые допустимы для этого вида). Вот тут-то Cerastoderma и показывает, на что она способна (в плане «эволюции»). Авторы работы отмечают, что в девяностых годах двадцатого века большинство особей Cerastoderma уже «вылезло» из грунта и находилось практически на его поверхности. Что было совсем не характерно для тех популяций Cerastoderma, которые существовали в Аральском море еще 20 лет назад. Авторы объясняют это тем, что в связи с вымиранием дрейссен, освобождается экологическая ниша, где можно питаться мелким планктоном, находясь прямо на поверхности грунта. При этом можно сколько угодно высовывать свою раковину над грунтом – никто уже не «садился» на эту раковину, и не оплетал её своими нитями.

Авторы работы приводят соответствующий рисунок, демонстрирующий это яркое изменение в пищевом поведении Cerastoderma (Рис. 8):

Рисунок 8. Схема положения Cerastoderma в грунте Аральского моря. 1 – типичное положение Cerastoderma isthmicum, 2 – положение современных Cerastoderma вне грунта. Из работы (Андреева, Андреев, 2003).

Помимо этого изменения в экологии, Cerastoderma 90-ых годов показывают еще и целый комплекс морфологических изменений, которые соответствуют их новому «имиджу» моллюсков, питающихся на поверхности грунта. А именно, у них смещается положение макушек раковины, меняется форма самой раковины (например, удлиняется её задний край), изменяется число и выраженность зубов и ребер раковины, изменяется строение замка (Андреева, Андреев, 2003). Авторы заключают, что большинство этих изменений биологически целесообразны. Они помогают моллюску удерживать устойчивое положение в новых для него условиях – на поверхности грунта. Кроме того, у большинства экземпляров наблюдается расширение мантийной линии в области сифонов.

Авторы приходят к выводу, что поскольку размах только что перечисленных морфологических изменений (т. е. установленных различий между Cerastoderma девяностых и семидесятых годов) выходит за пределы различий, характерных для разных видов двустворок (в других регионах), то здесь уже можно вести речь о факте видообразования. То есть, о появлении нового вида двустворчатого моллюска. Андреевы предполагают, что это видообразование произошло в результате стремительной эволюции под действием естественного отбора.

Такое же предположение авторы делают и в отношении установленных ими новых форм у других ракушек, из рода Syndosmya. Они заключают, что и эти морфологические варианты тоже возникли в результате именно эволюции моллюсков под соответствующим давлением естественного отбора (вследствие приспособления к грунтам разных типов).

Ну что же. Благодаря предыдущей главе, мы с Вами стали теперь уже опытными специалистами по «эволюции моллюсков», и можем понять, что в этом исследовании не так и почему говорить об «эволюции в ходе естественного отбора» здесь явно преждевременно. Давайте перечислим эти недостатки (в порядке убывающей важности):

1. Перед нами исследования, выполненные только одним коллективом авторов. Каких-либо независимых исследований (сделанных другими авторами), мы не имеем. По одной только этой причине говорить о строго установленном примере эволюции здесь уже вряд ли имеет смысл.

2. Самый главный недостаток конкретно этой работы – авторы не выяснили даже, являются ли обнаруженные ими изменения вообще наследственными? Или же установленные изменения ракушек имеют исключительно прижизненный характер? Может быть, все описанные изменения – это результат обыкновенной пластичности (модификационной изменчивости)? Действительно, весьма вероятно, что изменившееся поведение и морфология ракушек – простое следствие изменения условий среды. Может быть, конкретно этот вид ракушек всегда переходит к питанию на поверхности грунта, если в придонных слоях воды повышается количество пищи (планктона). Допустим, моллюск делает это, откликаясь именно на повышенное содержание планктона в соответствующих слоях воды. И при выходе на поверхность грунта у моллюска соответствующим образом изменяется еще и форма раковины. В этом случае мы будем наблюдать именно такую картину, которую наблюдали Андреевы – моллюски быстро и массово «вылезут» на поверхность грунта, демонстрируя при этом ряд соответствующих морфологических изменений… если в нужных слоях воды появится необходимое количество пищи. А оно там появилось, в связи с полным вымиранием других видов двустворок, которые раньше снижали содержание планктона в воде, а теперь снижать перестали (в связи с собственным вымиранием). Более того, авторы сами пишут об установленном ими повышении обилия планктона в воде Аральского моря.

То есть, возможно (и даже весьма вероятно), озвученные морфологические и поведенческие изменения, установленные авторами для этих видов ракушек, на самом деле, были, во-первых, характерны для этих видов. А во-вторых, являются не результатом эволюции, а просто результатом пластичности в ходе их индивидуального развития. В предыдущей главе мы видели, как улитки разных видов в ходе собственного роста образовывали более толстые раковины, если в воде присутствовал запах хищных крабов. Возможно, таким же образом и описанные ракушки Аральского моря способны выбираться из грунта, при этом соответствующим образом изменяя форму раковины, если в соответствующих слоях воды повышается обилие планктона? Или, допустим, если исчезают химические следы конкурента (Hypanis). Авторы работы не показали, что это не так.

Между тем, именно такое предположение наиболее вероятно. Чтобы его проверить, авторам необходимо было вырастить эти, «эволюционно измененные виды» ракушек в нормальных условиях (т. е. имитирующих условия Аральского моря в его исходном состоянии). И посмотреть, в кого конкретно превратятся изучаемые ими ракушки в таких условиях. Если эти ракушки в ходе роста всё равно продемонстрируют комплекс подмеченных авторами изменений, то значит, эти изменения, действительно, имеют наследственный характер. Если же в нормальных условиях «эволюционно измененные» ракушки тоже вырастут в совершенно нормальные формы (известные прежде), тогда это результат пластичности. И ни о какой «эволюции» в таком случае не может быть и речи.

Авторы такую проверку не сделали. Тем не менее, они почему-то пишут именно про «эволюцию моллюсков», игнорируя более простые варианты объяснений.

3. Авторы работы, скорее всего, справедливо связывают наблюдавшийся ими «взрыв» морфологической изменчивости моллюсков со стрессовыми условиями среды, в которые эти ракушки попали. Например, вот что они пишут по поводу развития личинок Syndosmya segmentum в воде Аральского моря:[18]

Перейти на страницу:

Илья Рухленко читать все книги автора по порядку

Илья Рухленко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Что ответить дарвинисту? Часть II отзывы

Отзывы читателей о книге Что ответить дарвинисту? Часть II, автор: Илья Рухленко. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать

0
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*