Kniga-Online.club

Алексей Лосев - Хаос и структура

Читать бесплатно Алексей Лосев - Хаос и структура. Жанр: Математика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Во–вторых, под «движением» геометры имеют в виду здесь вовсе не движение, а, наоборот, если угодно, «покой», так как понятие конгруэнтности есть во всяком случае понятие как [ого ] — то взаимо–соответствия, взаимосоотнесенности, какого–то совпадения, а это все суть виды покоя или, лучше, подвижного покоя. В–третьих, однако, дело тут, конечно, и не в покое. И движение, и покой суть слишком общие категории, применяемые в математике решительно ко всему[65], и не ими можно вскрыть сложную категорию геометрической конгруэнтности. Чтобы ее усвоить, надо присмотреться к ряду простейших геометрических операций. Пусть мы впервые пришли от точки А до точки В. Мы получили некую линию — пусть, например, прямую. Профану покажется, что если речь идет о получении прямой, то одной этой операции «движения» от А до В и достаточно, чтобы получить прямую. На самом же деле это вовсе не так просто.

с) Мало линию провести. Надо, после ее проведения, еще раз пробежать по ней глазами, сравнивая ее с окружающим фоном. Если этого становления не произведено, мы не можем поручиться, что наша прямая есть действительно прямая. Чтобы она была, надо, чтобы она отличалась от всего иного. Когда же мы ее проводили, мы действовали пока еще как бы слепо; и зрячими стали мы в отношении прямой только тогда, когда, пробегая по ней еще раз, мы будем исследовать, действительно ли она во всех своих точках в одинаковом смысле отличается от всего иного (от своего фона), т. е. действительно ли она есть замысленная прямая. Но и того еще мало. Надо еще третий раз пробежать глазами по полученной прямой и опять — совершенно с новым смысловым содержанием. Мы отличили нашу прямую от ее фона, но мы должны еще и отождествить ее с самой собою. Мы сравнили ее с иным, но мы также должны сравнить ее с нею же самою. Когда мы ее провели в первый раз, мы еще не знали, что она такая, потому что весь смысл такой прямой был только смыслом первого ее утверждения, гипо–стазирования, первого ее бытийственного положения. Когда мы провели ее во второй раз, мы уже получили возможность сказать, что наша линия а не есть ни b, ни с, ни вообще что–нибудь иное. Когда же мы проходили по нашей линии в третий раз, мы получили впервые возможность сказать, что наша прямая а есть именно прямая а.

Для этого надо было, пробежавши от А до В, пробежать еще от В к А и — отождествить оба прохождения.

Первый процесс проведения прямой был полаганием ее едино–раздельности, второй—ее становления (непрерывности), третий процесс есть полагание ее конгруэнтности. Тут мы пока утверждаем самое начало конгруэнтности,, а именно, когда отрезок конгруэнтен самому себе, но зато всякая иная конгруэнтность вырастает отсюда уже сама собой.

d) Таким образом, сущность конгруэнции заключается не в движении (движение есть и в едино–раздельности, и в непрерывности, и в параллельности), но в самоотождествлении геометрической фигуры в процессе становления, т. е. в ее ставшем. Конечно, становление как–то предполагается уже в самой едино–раздельной структуре. Но оно тут только предполагается (предполагается тут, как и везде, вообще очень многое), а не вбирается в самую эту структуру (так же, как черный костюм предполагает, что есть или возможен белый костюм, но это еще не значит, что данный белый костюм есть в то же время и черный) и тем более не происходит тут самоотождествления в результате становления. Чтобы вобрать становление в саму себя, едино–раздельная структура должна быть внутри перекрыта слоем непрерывности. Это мы как раз и получили, пробежавши по нашей прямой во второй раз с целью соотнесения ее с ее инобытием. Но та ли эта прямая после включения в себя становления, что и прямая до этого включения? Для этого нужно было пробежать по ней в третий раз. И если после такого пробегания мы определили, что это та же самая линия, то значит, мы включили в едино–раздельную структуру прямой не просто становление, не вообще безразличное становление без начала и конца, но как раз то самое становление, которое необходимо, чтобы наша структура стала, не больше и не меньше. А это значит, что наша прямая отождествилась с самой собой в процессе становления, что она — ставшее, что она конгруэнтна с самой собой.

2. Не вносит большой ясности в дело и обычное у многих геометров именование теорем, основанных обычно на категории конгруэнтности, как метрических. Это последнее обозначение настолько часто встречается в геометрической терминологии, что, кажется, тут и выяснять совершенно нечего. Мы, однако, уже много раз сталкивались с тем, что понятное математикам оказывается совсем не понятным с философско–логической точки зрения. Так же требует разъяснения и понятие геометрической метрики.

a) С понятием измерения мы уже встретились в § 54, где пробовали конструировать трехмерное и вообще п–мерное пространство, и в § 63.2, где заговорили об «общей метрической геометрии». Уже в этих двух случаях термин «измерение» обладает совершенно различным содержанием. Когда же говорят о метрике в смысле разных пространств, это будет еще третий смысл термина. Необходимо отдавать себе в этой путанице полный отчет.

b) У меня нет иного пути к расшифрованию разных значений этого термина и к их взаимному расположению, кроме диалектики. Диалектический же ход мысли предуказан заранее. Но прежде чем произвести здесь диалектическое исследование, необходимо утвердить самое главное: представление об измерении возникает впервые только с проблемой становления. Измерять можно только тогда, когда есть что измерять и чем измерять. Чтобы было что измерять, необходима какая–нибудь структура; а чтобы было чем измерять, необходимо уметь как–нибудь заполнять эту структуру. Структура впервые создается сферой едино–раздельности. Таким образом, теоремы (а тем более аксиомы) едино–раздельности сами по себе, собственно говоря, не нуждаются ни в каком понятии меры, или измерения. Но ведь сфера идеальной едино–раздельности есть сфера идеальная, сфера Эйдоса. Для нас она является также сферой чистого понятия, чистой категориальности. В категориях же может быть представлено вообще все существующее и несуществующее, возможное и невозможное. В категориях же мы говорили и о геометрических фигурах. В сфере Эйдоса мы имеем дело не столько с самими геометрическими фигурами, сколько с их понятиями. В этом смысле мы и нашли возможным дедуцировать геометрические фигуры еще на стадии едино–раздельности, хотя подлинное их место, конечно, только там, где уже имеет [ся] принцип непрерывности (или прерывности). С вхождением в сферу непрерывности мы впервые получаем геометрические фигуры как таковые (а не только их категориальную структуру и не только их эйдос).

Об измерении мы заговорили после перехода к сфере становления, т. е. к сфере непрерывности. Но это было уже другое измерение. Если раньше оно только впервые эйдетически конструировало самую фигуру — и было потому измерением впервые появляющихся пространств, — то здесь мы уже не конструируем фигуру из понятий, но впервые созерцаем ее как готовую. Раньше становление у нас было внутри самой фигуры, будучи ее нераскрытым самотождеством, так что «измерять» фигуру и впервые ее конструировать было одно и то же. Теперь же, поскольку фигура уже сконструирована, дальнейший переход ее в становление влечет за собой разделение функций «конструирования» и «измерения», и измерение оказывается операцией внешней в отношении конструирования. Но если так, то в чем же заключается отношение этих двух операций?

Если мы от эйдоса фигуры перешли к самой фигуре, то это значит, что теперь у нас не просто эйдос фигуры, но сама фигура и в ней — ее эйдос. Мы смотрим на фигуру и уже в ней видим ее эйдос, отличный от нее самой. Но это значит, что мы при созерцании такой фигуры сравниваем саму фигуру с ее эйдосом, с ее сущностью. Сравнение[66] же — это и есть более общая категория для всех видов измерения. Другими словами, здесь мы эйдос фигуры измеряем самой фигурой (или, если угодно, саму фигуру — ее эйдосом, хотя это последнее утверждение, однако, менее удобно, так как под измерением обычно понимается применение к измеряемому операции сравнения его с дальнейшими, низшими сферами, например размеры конкретной земли измеряются отвлеченными километрами).

с) Совсем новое понимание метрической операции [конгруэнтности. Здесь еще новый переход в инобытие, новый даже по сравнению с тем, когда мы переходили от эйдоса фигуры к самой фигуре. Естественно, что застилание фигуры становлением отодвигает теперь измерение еще дальше от конструирования. Если здесь переход в становление был только не чем иным, как гипостазиро–ванием эйдоса фигуры, то теперь, очевидно, введение нового инобытия должно не просто отличать саму фигуру от ее эйдоса, но оно должно установить инобытийные различия уже в самой гипостазированной фигуре. Раньше фигуру мы сравнивали с ее эйдосом, теперь же фигура получила для нас вполне самостоятельное значение; и если мы будем ее с чем–нибудь сравнивать, т. е. чем–нибудь измерять, то уже не с чем–нибудь высшим и более первоначальным, но с чем–нибудь последующим, вторичным или по крайней мере с самой собой.

Перейти на страницу:

Алексей Лосев читать все книги автора по порядку

Алексей Лосев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Хаос и структура отзывы

Отзывы читателей о книге Хаос и структура, автор: Алексей Лосев. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*