Kniga-Online.club
» » » » Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Читать бесплатно Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

Но Кантор в статье 1874 года, следуя совету Вейерштрасса, не упоминал об этих соответствиях (лишь намекнул), а также о кардинальных числах. Как тогда он мог утверждать, что некая группа чисел эквивалентна группе натуральных чисел? Для этого Кантор использовал понятие, которое стало одним из основных в его теориях: последовательность.

В последовательности всегда есть первое число, второе и так далее. Существуют последовательность нечетных натуральных чисел (1, 3, 5, 7, 9, 11, ...) и последовательность простых чисел (2, 3, 5, 7, 11,...). Последовательности могут иметь и конечное число членов, но мы рассмотрим только те из них, которые, как в предыдущих примерах, состоят из бесконечного количества не повторяющихся членов.

Заметим, что для установления взаимно однозначного соответствия между натуральными и целыми числами мы должны сначала представить их в виде последовательности: 0,1, -1, 2, -2, 3, -3,... То же самое необходимо для установления соответствия между натуральными и рациональными числами:

Следовательно, утверждение, что некое множество чисел эквивалентно множеству натуральных чисел, означает, что его члены могут быть представлены в виде последовательности.

Я бы с удовольствием вставил комментарий о фундаментальном различии между группами, но убрал его, следуя совету господина Вейерштрасса.

Георг Кантор в письме Рихарду Дедекинду 27 декабря 1873 года

Используя это следствие, Кантор не стал упоминать в своей статье ни об эквивалентности натуральным числам, ни об общем кардинальном числе, а просто рассмотрел возможность организации членов некоей группы в виде последовательности.

ДИАГОНАЛЬНЫЙ МЕТОД

Теперь вернемся к числовой оси и предположим, что мы уже отметили числа 0 и 1. Исходя из этих отметок, позиции других чисел тоже строго определены. Будет ли ось полностью заполнена, если мы отметим на ней рациональные числа? Другими словами, можно ли записать все числа как соотношение двух целых чисел? Ответ на оба вопроса: нет. После того как мы нанесем на ось все рациональные числа, на ней все равно останутся точки, которым не будет соответствовать никакое число. Открытие иррациональных чисел приписывается Пифагору (VI век до н.э.), хотя, возможно, это был кто-то из его учеников. Иррациональные числа не могут быть представлены в виде соотношения целого и натурального числа, например √2-1,4142.... .. и π = 3,14159... Дополняют ось вещественные числа.

Именно они — включая в себя рациональные и иррациональные числа — не оставляют на оси ни одной свободной точки.

Мы вернемся к вещественным числам в следующей главе, так как они занимают важное место в развитии научных теорий Кантора. А пока рассмотрим вопрос: эквивалентно ли множество вещественных чисел множеству натуральных чисел (как в случае с целыми и рациональными числами)? Ответ стал одним из главных открытий Кантора: нет, эти множества неэквивалентны, то есть между ними нельзя установить взаимно однозначное соответствие.

Для доказательства недостаточно привести один пример неудавшегося соответствия, требуется показать, что провалом закончится любая попытка установить взаимно однозначное соответствие между натуральными и вещественными числами. Невозможно сделать так, чтобы каждое натуральное число соответствовало вещественному.

Для наглядности рассмотрим конкретный случай, в котором попытка установить соответствие оборачивается неудачей. Этот пример действителен для любой другой попытки, поэтому можно утверждать, что установить соответствие невозможно никоим способом. Попробуем найти пару для каждого вещественного числа из группы натуральных чисел и увидим, что какое-то вещественное число обязательно останется без пары (ниже показаны натуральные числа только от 0 до 4, хотя на самом деле этот список продолжается бесконечно).

Принцип, по которому распределялись числа, неясен, но это и не важно, так как данный метод работает вне зависимости от того, какое правило принято за основу. Обратим внимание на цифры после запятой.

Теперь рассмотрим диагональ, которая стремится от левого верхнего угла к правому нижнему. Она настолько важна в этом доказательстве, что само доказательство получило название диагонального метода.

Число, которое мы ищем (то, которому не найдется пары), начинается с 0,... а цифры после запятой будут зависеть от чисел, отмеченных по диагонали. Чтобы получить первую цифру после запятой, возьмем первую цифру диагонали и прибавим 1 (если это цифра 9, то запишем только 0). В нашем случае это цифра 3, поэтому число начнется с 0,4... Чтобы получить следующую цифру, прибавим 1 ко второму числу диагонали (опять же если это 9, мы запишем 0). Для третьей цифры числа возьмем третье число диагонали и так далее. В нашем примере мы получим 0,41162...

Число, которое мы только что высчитали, не соотнесено ни с каким натуральным, мы пропустили его при раздаче пар. Как мы можем быть в этом уверены? Дело в том, что найденное число не может быть тем, которое соотносится с 0, потому что они различаются первой цифрой после запятой; не может быть тем, которое соотносится с 1, потому что у них разные вторые цифры после запятой; не может быть тем, которое соотносится с 2, потому что у них разные третьи цифры после запятой, и так далее до бесконечности.

Поскольку для одного числа не нашлось соответствия, наш пример взаимно однозначного соответствия между множествами натуральных и вещественных чисел является неправильным. Любая другая попытка закончится неудачей по этой же причине, следовательно, между рассматриваемыми множествами нет взаимно однозначного соответствия.

Если немного изменить этот ход рассуждений, можно доказать, что множество чисел, содержащихся в любом, даже самом маленьком отрезке числовой оси, не эквивалентно множеству натуральных чисел. Множество вещественных чисел (или чисел одного отрезка оси) нельзя представить в виде последовательности, как в 1874 году заявил Кантор. Надо заметить, что доказательство, приведенное Кантором, было не совсем таким. Диагональный метод был описан лишь в 1892 году в статье Über eine elementare Frage der Mannigfaltigkeitslehre («Об одном элементарном вопросе учения о многообразиях»).

АЛГЕБРАИЧЕСКИЕ ЧИСЛА

В статье 1874 года Кантор не говорил ни о целых, ни о рациональных числах. Он доказал, что вещественные числа не могут быть представлены как последовательность, и рассмотрел еще одно множество — множество алгебраических чисел.

Обратимся к древней и очень известной задаче о квадратуре круга, впервые сформулированной древнегреческими геометрами в V веке до н.э. Она состоит в том, чтобы при помощи линейки без делений и циркуля построить квадрат с той же площадью, как у заданной окружности.

Линейка в те времена была обычным прямоугольником для рисования отрезков, на ней не было никаких делений. Ограничительные условия этой задачи свойственны всей древнегреческой геометрии, и происходили они от элитарного представления о науке: измерениями занимались «низшие классы» — купцы и ремесленники, — а геометры и философы работали с идеальными фигурами и понятиями, не опускаясь до «второстепенного» и используя инструменты, годные для создания «чистых» фигур (прямых и окружностей) без их измерения.

В течение веков было сделано множество попыток получить квадратуру круга, но ни одна из них не увенчалась успехом. Никто не был в состоянии найти решение этой задачи; с другой стороны, не было доказано, что решение невозможно.

Если r — это радиус окружности, то ее площадь рассчитывается как πr2. Пусть вас не удивляет, что число π связано с этой задачей. Действительно, мы можем доказать, что задача вычислить квадратуру круга эквивалентна другой: взяв за единицу измерения любой отрезок, построить при помощи линейки без делений другой отрезок, длина которого равнялась бы π раз этой единице. Другими словами, построить отрезок длины π.

То, что эти задачи эквивалентны, означает: если допустимо построить отрезок длины π, то можно построить и квадратуру круга, и наоборот. Если же одно из этих построений неосуществимо, то неосуществимо и другое. Первый важный шаг в решении этой задачи был сделан в XVIII веке, когда доказали, что для того чтобы построить отрезок с помощью линейки и циркуля, его длина должна соответствовать алгебраическому числу. Точное определение алгебраического числа слишком сложное, достаточно сказать, что таким называется число, являющееся решением уравнения определенного типа (такого, в котором задействованы целые числа). К тому же не все алгебраические числа могут быть найдены с помощью циркуля и линейки, а только отвечающие определенным требованиям.

Перейти на страницу:

Gustavo Pineiro читать все книги автора по порядку

Gustavo Pineiro - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. отзывы

Отзывы читателей о книге Бесчисленное поддается подсчету. Кантор. Бесконечность в математике., автор: Gustavo Pineiro. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*