Kniga-Online.club

Алексей Лосев - Хаос и структура

Читать бесплатно Алексей Лосев - Хаос и структура. Жанр: Математика издательство неизвестно, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

4. Математически это есть в точности то, что известно под именем аксиомы Архимеда. Ее можно формулировать чисто арифметически. И тогда она примет такой вид:

если а>0 и b>0, то всегда a–f а + а + … + а>b.

Можно ее формулировать и геометрически: если один и тот же отрезок откладывать на прямой достаточное число раз, то общая сумма всех отрезков всегда выйдет за пределы любой точки на этой же прямой.

Эту аксиому математики справедливо называют аксиомой непрерывности. Однако очень мало сказать, что это есть аксиома непрерывности. Ведь существует много других выражений для непрерывности; и если гнаться за логической точностью, то необходимо указать ту категорию, под которой развита эта аксиома Архимеда. Размышление показывает, что тут имеется в виду не столько непрерывность вообще, сколько один определенный ее гип, а именно, непрерывность в аспекте ее полноты и непроницаемости. Что, собственно, хочет сказать аксиома Архимеда? Она хочет сказать, что когда мы откладываем отрезок во второй раз, то его начало должно совпасть с концом уже отложенного отрезка, а когда мы откладываем его в третий раз, то начало третьего должно совпасть с концом второго и т. д. Другими словами, мы хотим этим сказать, что если на прямой отложен данный отрезок, то во второй раз мы уже не можем помещать его на то же самое место, но необходимо выйти за пределы первого отрезка, и так же — во второй раз, и т. д. Следовательно, в аксиоме Архимеда имеется в виду только тот аспект непрерывности, который мы выше обозначили как непроницаемость, протяженность, или полноту.

5. За бытием следует инобытие, и за смыслом следует становление. Что такое непрерывность как становление? Она уже сама по себе с самого начала есть становление. Но теперь мы в сфере самого этого становления различаем бытие, становление, ставшее и выразительную форму. Что же такое теперь становление самого становления в этой общей сфере непрерывности?

Становление есть процесс, и процесс неразличимого, алогический процесс. Непрерывность, следовательно, должна теперь мыслиться как алогический процесс, как наплывание и размыв неразличимости. Чем, однако, определяется здесь наплывающая неразличимость? Тем, что она не имеет в себе ни одной твердой, устойчивой точки, в частности не имеет никакого определенного конца. Если даны какие–нибудь две точки, то, имея дело с непрерывной величиной, мы сможем между ними вставить еще одну точку, как бы ни было мало это расстояние. Такое представление непрерывности уже содержит в себе идею процесса, и притом явно процесса бесконечного и непрерывного. Поэтому аксиома непрерывности на этой диалектической стадии развития непрерывности может быть формулирована так: в непрерывной величине различие каждых двух ее моментов может быть как угодно мало. Или: в непрерывной величине расстояние между любыми ее двумя точками может быть сделано меньше любой заданной величины. Этим выразится уже не полнота и не непроницаемость, но именно наплывание, становление непрерывности.

6. За становлением следует ставшее. Непрерывность должна быть также и ставшим. Ее процессуальность где–то должна остановиться, и ее становление должно натолкнуться на некую твердую границу, которая уже не может быть чисто идеальной границей, как раньше, т. е. границей фигуры, но должна быть границей неразличимой протяженности. Неразличимое протекание и расплы–вание где–то должно остановиться. Однако, будучи подлинным становлением, оно ведь не может реально остановиться. Ее границей, как и границей вообще, может быть только идеально–смысловое. С другой стороны, это идеально–смысловое не должно быть здесь границей такого же идеально–смыслового, так как в этом случае мы совсем покинули бы сферу алогического, вне–смыслового становления. Следовательно, непрерывная величина должна быть текуче–неразличимым, вне–смысловым становлением, т. е. оно никогда не должно кончаться, но это становление должно иметь идеально–смысловую границу, чтобы перейти вообще из становления в сферу ставшего. Это значит, что непрерывная величина имеет предел. Предел ведь не есть сама непрерывная величина, которая потому и непрерывна, что не имеет никаких ни начал, ни концов (ибо иначе она была бы прерывна). И тем не менее предел как–то присутствует в этом непрерывном потоке, и не только присутствует, но даже направляет его, управляет им, осмысливает его. Это и значит, что он присутствует здесь идеально–осмысленно, поскольку функции всего идеально–осмысленного в реаль–ном–вне–смысленном заключаются в осмысливании, в направлении алогического потока, в оформлении. Сам же этот непрерывный алогический поток продолжает быть реально–алогичным, неразличимым, наплывающим, уходящим в безраздельную мглу бесконечности.

Вейерштрасс формулировал коренящуюся здесь аксиому геометрически, но ее легко понять и чисто арифметически: если на отрезке имеется неограниченный ряд следующих друг за другом точек, то существует такая (предельная) точка, что на любом расстоянии от нее имеется точка ряда. Это то, что мы могли бы назвать аксиомой непрерывности на той стадии диалектического развития этой непрерывности, когда она превращается в «наличное бытие», в ставшее.

7. а) Наконец, понятию непрерывности необходимо придать еще более богатое и значительное содержание, когда оно выходит уже за пределы и категории ставшего. Именно, после ставшего мы констатировали· новый переход в смысловую сферу, но такую, где даны не просто внутренние различия смысла самого по себе, но куда вобраны и все различия по факту, которые были при[в]несены становлением и ставшим. Это как бы расцветший смысл, почему мы и именовали эту область как эманативную, энергийную и выразительную. Наша непрерывность должна не просто быть внешним фактом, несущим на себе идеальный смысл, т. е. не просто неразличимым, бесконечным процессом, содержащим в себе идею предела, но наша непрерывность должна теперь растворить одно в другом, т. е. в ней должна быть теперь уже преодолена самая антитеза реального факта и идеального смысла, или, другими словами, законченность и различимость предела должна раствориться в хаотической и неразличимой бездне фактического становления. И это возможно только в том случае, если непрерывность перестанет быть и голой протяженностью, исполненностью, и голой, неохватной процессуаль–ностью и перестанет содержать в себе идеальный смысл только как невыполнимое задание (предел). Но что же такое протяженность, содержащая в себе и свое ставшее, и самый смысл этого ставшего становления? Это, несомненно, есть некий образ, некая выразительная форма, где всякое различение снова (как в чисто идеальной области) влечет за собой и различение по факту, но тут различение происходит не до факта, а после факта, после инобытийного осуществления, так что различение обладает здесь не просто идеальной бесплотностью чистого ума, но еще и активно полагающей определенно сконструированную сферу инобьггийной действительностью. Прежний «предел», к которому мы пришли в связи с категорией ставшего, должен перестать быть только идеальным заданием и должен быть конструирован как реальная выразительность каждой точки алогического становления. Предел должен быть как бы окутан этим становлением со всех сторон; и мы должны как нащупывать его в самом становлении, так и нащупывать, полагать становление при полагании самого предела.

Такое понимание непрерывности лежит в основе постулатов Дедекинда и Кантора.

b) Дедекинд формулирует аксиому непрерывности так:

«Если все точки прямой распадаются на два класса такого рода, что каждая точка первого класса лежит влево от каждой точки второго класса, то существует одна, и только одна точка, которая производит это разделение прямой на два класса, это рассечение прямой на два куска».

С первого взгляда совершенно не видно, почему постулат непрерывности Дедекинда обладает указанными выше свойствами. Чтобы это уразуметь, начнем с житейских образов. Когда я смотрю сейчас на георгины, то их пышные темно–красные цветы хотя и составляют нечто целое со всем садом, но это целое дано тут в прерывных образах. Когда же я с георгин перевожу глаза на небосклон, то я вижу, что густая синева в зените постепенно, непрерывно переходит в голубизну ближе к горизонту и на самом горизонте почти уже теряет всякий голубой оттенок и становится белесоватой и почти белой. Наконец, когда я смотрю просто в зенит, то никакого перехода из одного цвета в другой я вообще не замечаю, и переход происходит только по вполне однородному густо–синему полю.

Аксиома непрерывности, основанная на чистом становлении, предполагает переход по одному пустому и равномерному пространству. Тут просто происходит бесконечное количество актов полагания, слившихся в одно общее протяженное полагание, т. е. тут полагание есть полагание только бы гия, чистого бытия, вне всякой качественности. Тут имеются в виду только самые акты полагания и совершенно игнорируется смысл того, что именно полагается. С другой стороны, аксиома Архимеда, основанная на четком различении одного заполненного пространства от другого, вовсе не говорит о чистом становлении в непрерывном потоке, но только говорит о тех различиях, которые вносятся в этот поток едино–раздельной структурой числа. Аксиома Архимеда относится к непрерывности в аспекте едино–раздельной струкгуры того, что вовлечено в поток непрерывности. Это есть непрерывность георгин, левкоев, роз, резеды и пр. цветов на общем фоне сада. Ведь сад тоже есть нечто целое, и эта целость непрерывно разлита по всем отдельным цветкам и деревьям, входящим в состав сада. Вот о такой–то непрерывности и говорит аксиома Архимеда. Это непрерывность прерывных предметов.

Перейти на страницу:

Алексей Лосев читать все книги автора по порядку

Алексей Лосев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


Хаос и структура отзывы

Отзывы читателей о книге Хаос и структура, автор: Алексей Лосев. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*