Генри Дьюдени - Кентерберийские головоломки
Я нашел большое число решений для случая четырех ферзей и ладьи или слона, но единственным решением, как я полагаю, с тремя ферзями и двумя ладьями, при котором все фигуры защищены, будет решение (см. рисунок г), впервые опубликованное доктором К. Плэнком.
Однако с тех пор я нашел дополнительное решение для случая трех ферзей, ладьи и слона, хотя фигуры и не защищают друг друга (см. рисунок д).
141. Мои читатели привыкли к тому, что требуется по меньшей мере 5 планет, дабы атаковать каждую из 64 звезд, расположенных в виде квадрата, а потому многие из них, быть может, полагают, что в случае большего квадрата потребуется увеличить число планет. Именно с целью изменить это ошибочное мнение, а также предостеречь читателей от еще одного из тех многочисленных подводных камней, которыми полон мир головоломок, я и придумал эту новую задачу со звездами. Позвольте мне сразу же заметить, что в случае квадратного расположения 81 звезды существует несколько искомых расположений. На рисунке приведено решение головоломки «Южный Крест».
Стоит вспомнить, что в условии говорилось: «Разумеется, после перестановки они закроют 5 новых звезд, отличных от тех, которые закрыты сейчас». Это было сделано для того, чтобы исключить более простое решение, в котором передвигаются лишь 4 планеты.
142. Передвижения ферзей ясны из приведенных здесь рисунков 1–4, которые показывают положение на доске после каждого перемещения.
В итоге все клетки оказываются либо занятыми, либо под ударом, но ни один ферзь не угрожает другому ферзю. На последнем шаге ферзя в верхнем ряду можно было бы передвинуть еще на одну клетку дальше влево. Это, как я полагаю, единственное решение данной головоломки.
143. На рисунке можно заметить, что только 3 ферзя передвинуты с их первоначального положения на краю доски и что в результате 11 клеток (отмеченных черными точками) не находятся под угрозой нападения.
Я рискну утверждать, что 8 ферзей нельзя расположить на шахматной доске таким образом, чтобы остались неатакованными более чем 11 клеток. И хотя строгое доказательство этого факта отсутствует, я полностью уверен в справедливости данного утверждения. Существует по меньшей мере 5 различных расположений, при которых остаются неатакованными 11 клеток.
144. Шестнадцать пешек можно расположить таким образом, чтобы никакие три из них не оказались на одной прямой, идущей в любом направлении (см. рисунок). Как и требовалось в условии, мы рассматриваем пешки просто как точки на плоскости.
145. Существует 6480 способов, которыми можно разместить человека и льва при единственном ограничении, что они располагаются в разных местах. Это очевидно, ибо человека можно поставить на любое из 81 места, и в каждом случае остается 80 мест для льва; следовательно, 81 × 80 = 6480. Далее, если мы вычтем отсюда число способов, при которых человек и лев оказываются на одной тропе, то в результате получится число способов, при которых они не располагаются на одной тропе. Число способов, при которых они оказываются на одной тропе, равно, как можно установить без особых затруднений, 816. Следовательно, искомый ответ равен 6480-816=5664.
Решением в общем случае будет у п (п-1)(3 п 2-п+2). Это, разумеется, эквивалентно тому, как если бы мы сказали, что при условии, что на стороне «шахматной доски» расположено п клеток, на ней можно разместить двух слонов указанным числом способов, при которых они не атакуют друг друга. Только в таком случае ответ нужно было бы уменьшить вдвое, поскольку два слона не отличаются друг от друга, и, поменяв их местами, мы не получим нового решения.
146. Наименьшее возможное число коней при данных условиях равно 14. Иногда полагают, что существует очень много различных решений. Кстати, существуют лишь 3 расположения, если не учитывать повороты и отражения. Довольно удивительно, что, по-видимому, никому в голову не пришло следующее простое доказательство и никто не догадался действовать о белыми и черными клетками по отдельности.
Семь коней можно расположить на белых клетках так, чтобы они атаковали каждую черную клетку лишь двумя способами. Они показаны на рисунках 1 и 2. Обратите внимание, что в обоих случаях 3 коня занимают одинаковые положения. Следовательно, ясно, что если вы повернете доску так, чтобы в левом верхнем углу оказалась черная клетка, и поставите коней на те же самые места, то у вас получатся два похожих способа атаки всех белых квадратов.
Я предположу, что читатель выполнил два последних описанных рисунка на кальке, и обозначу их 1а и 2а. Теперь, наложив рисунок 1а на рисунок 1, вы получите решение на рисунке 3, наложив рисунок 2а на рисунок 2, вы получите рисунок 4, а наложив рисунок 2а на рисунок 1, получите рисунок 5. Вы можете теперь перебрать все возможные комбинации этих двух пар рисунков, и при этом вы получите лишь те 3 решения, которые я привел, а также решения, получающиеся из них с помощью поворотов и отражений. Следовательно, существуют только эти 3 решения.
147. Два единственно возможных минимальных решения приведены на двух рисунках, где, как можно заметить, требуется лишь 16 ходов. Для большинства окажется трудным сделать число ходов меньше 17.
148. Путь показан на рисунке. Можно заметить, что десятый ход приводит нас в клетку, отмеченную числом 10, а последний, 21-й, ход заканчивается в клетке 21.
149. Пунктирная линия показывает путь, состоящий из 22 прямолинейных отрезков, которым рыцарь добрался до девы. Необходимо, войдя в первую камеру, немедленно вернуться назад прежде, чем войти в другую камеру. Иначе вам не удастся найти решение.
150. Если узник выберет путь, показанный на рисунке, где для простоты не изображены двери, то он посетит каждую камеру ровно по одному разу, пройдя 57 прямолинейных участков. Ни при каком пути ладьи по шахматной доске нельзя превзойти это число.
151. Прежде всего наименьшее число прямолинейных участков в каждом случае равно 22, и, дабы ни одну ячейку не посетить дважды, совершенно необходимо, чтобы каждый зашел в первую камеру, а затем немедленно «посетил» ту, из которой отправился; после этого он должен следовать вдоль пути, указанного на рисунке. Путь человека обозначен сплошной линией, а путь льва – пунктиром. Можно следовать вдоль каждого пути с двумя карандашами в руках и заметить, что человек и лев ни разу не встретились, хотя есть одно место, где они «мелькали в поле зрения друг друга».
Далее, мы обнаружим, что, двигаясь с постоянной скоростью, они никогда не окажутся в иоле зрения друг друга. Однако на рисунке можно заметить, что лев и человек оказываются в камерах, обозначенных буквой А, одновременно и, следовательно, могут увидеть друг друга через открытые двери. То же происходит, когда они оказываются в камерах В, причем верхние буквы в обоих случаях показывают положение человека, а нижние – положение льва. В первом случае лев устремляется прямо к человеку, тогда как человек, кажется, пытается зайти ко льву с тыла. Второй случай несколько более подозрителен, ибо похоже, что они здесь удирают друг от друга!
152. Я показал на рисунке, каким образом слон может посетить каждое из намеченных мест за 17 ходов. Очевидно, что мы должны начать с одного углового квадрата и закончить в диагонально противоположном «Головоломку нельзя решить за меньшее число ходов.
153. Передвигайте шашки следующим образом: 2–3, 9–4, 10 – 7, 3–8, 4–2, 7–5, 8–6, 5 – 10, 6–9, 2–5, 1–6, 6–4, 5–3, 10 – 8, 4–7, 3–2, 8–1, 7 – 10. Теперь белые шашки поменялись местами с красными за 18 ходов при соблюдении заданных условий.
154. Играйте следующим образом, используя обозначения, основанные на нумерации клеток на рисунке А.
На рисунке Б показано положение после девятого хода. Слоны на клетках 1 и 20 еще не ходили, но 2 и 19 уже двигались вперед, а затем вернулись назад. В конце 1 и 19, 2 и 20, 3 и 17 и 4 и 18 поменяются местами. Обратите внимание на позицию после тринадцатого хода.
155. На приведенном рисунке показан второй вариант турне ферзя. Если вы прервете линию в точке J и уберете более короткий участок этой прямой, то получите искомый путь для любой клетки J.