Kniga-Online.club

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Читать бесплатно Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ. Жанр: Математика издательство -, год 2004. Так же читаем полные версии (весь текст) онлайн без регистрации и SMS на сайте kniga-online.club или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Перейти на страницу:

----------------

Нонильоны децильонов . . . 1063

Децильоны децильонов . , . 1066

----------------

1064 - девятые архимедовы числа.

----------------

* Здесь стоит число, равное сумме зерен пшеницы на шахматной доске в шестьдесят четыре клетки. Примерно оно равно 1019 • 1,8447.

** Здесь стоит число, равное сумме зерен на шахматной доске в сто клеток. Примерно оно равно 1030 -1,2677.

*** Здесь стоит число, равное сумме зерен на шахматной доске в сто девяносто шесть клеток. Примерно оно равно 1059 • 1,0039.

Древний историк Плутарх так говорил об Архимеде: "Во всей геометрии нет теорем более трудных и более глубоких, нежели теоремы Архимеда. Мне самому всегда казалось, когда я впервые знакомился с его математическими предложениями, что они до того трудны, что ум человеческий не в состоянии найти им доказательства. Однако когда узнаешь, как сам Архимед их доказывает, то тебе кажется, будто ты сам нашел это доказательство - до того оно просто и легко".

- 176 -

- Ты знаешь, я иногда сам что-то в этом роде чувствовал! .. Только не но отношению к Архимеду, а вообще по отношению к математике. Я очень хорошо понимаю, что хочет сказать этот древний историк!

- Так оно и должно быть, - с улыбкой ответил Радикс. - Ты испытываешь это светлое чувство радостного удивления перед могуществом человеческого разума, когда встречаешься с элементарными положениями, а люди, более тебя начитанные, испытывают то же, когда видят более сложные построения. Это вполне естественно. Один из самых крупных математиков семнадцатого века, Лейбниц, который очень много сделал для развития высшей математики, так сказал об Архимеде: "Когда внимательно разбираешься в творениях Архимеда, то постепенно перестаешь удивляться новейшим открытиям современных геометров". Два других великих математика - французы Лагранж и Даламбер - в восемнадцатом веке тоже немало потрудились над созданием высших разделов математики. Они писали об Архимеде: "Ни один из геометров древности не сделал таких многочисленных и важных открытий. Поэтому какими бы важными преимуществами ни обладали новые методы и как бы это ни было общеизвестно, тем не менее каждый математик должен поинтересоваться, какими тонкими и глубокими размышлениями Архимед сумел достигнуть таких сложных результатов". А замечательный английский математик Валлис, современник Ньютона, даже называл его "человеком сверхъестественной проницательности". Да и в гораздо более раннее время, когда ни Лейбница, ни Валлиса, ни Даламбера с Лагранжем не было еще на свете, крупнейшие ученые, которые впервые начали снова двигать вперед математику после долголетнего застоя, такие люди, как, например, Иоганн Кеплер (шестнадцатый-семнадцатый века), прямо говорили, что они пытаются продолжать дело Архимеда, а Бонавентура Кавальери (современник Кеплера и ученик Галилея) с гордостью утверждал, что ему удалось проникнуть в тайны того аналитического метода, которым Архимед пробивался через самые неприступные проблемы. Вот какой это был замечательный человек! Кавальери гордился тем, что сумел восстановить его методы. Мы еще поговорим с тобой об этом замечательном ученом. Ньютон однажды сказал, что он совершил свои открытия, так как "стоял на плечах гигантов". Кто же эти гиганты?

Это раньше всех Кеплер и Галилей.

- Да! - отвечал в почтительной задумчивости мальчик. - Только ведь это сочинение Архимеда о счете песка никаких особенных задач не решает. Правда?

- Ошибаешься! - отвечал Радикс. - Это сочинение имеет необыкновенно важное значение, и даже гораздо более важное, нежели решение какой-либо частной проблемы. Оно ставит такие серьезные вопросы, которых никто еще до Архимеда на практике не решался касаться; если же и касался, то, так сказать, несознательно, не представляя себе всей важности этой задачи. Она, в частности, заключается в доказательстве положения, утверждающего, что ум человеческий способен легко строить числа, превышающие любую заранее заданную величину.

- 177 -

Сам Архимед определял задачу этого сочинения так: оно должно доказать, что данное число песчинок не бесконечно и что возможно построить число, превышающее его. Но ведь песчинки - только частный пример, поэтому я настаиваю на моем первом определении задачи "Псаммита" (так называется по-гречески это сочинение Архимеда).

- Это очень интересно, - ответил Илюша поразмыслив. - Но ведь это только для того, чтобы посмотреть, к чему приведет такая странная задача? Не правда ли?

- Напрасно ты так думаешь, - ответил, нахмурясь, Радикс, - совершенно напрасно!.. "Псаммит" был сочинен Архимедом не для праздной забавы, отнюдь. Чем более серьезные задачи ставил перед собой человек в те древние времена (задачи из области физики, механики, астрономии и так далее), тем более сложный математический аппарат ему был нужен. И вот, чтобы начать строить этот аппарат, ему, человеку, и понадобились очень большие числа. Громадные! Необъятные! И "Псаммит" Архимеда был первым серьезным шагом в этой области. После того как содержание этого сочинения Архимеда было усвоено, можно было ставить себе и иные задачи. Например: что мы будем получать, если начнем последовательно делить единицу на ряд чисел Архимеда и дойдем до самых больших из названных им чисел?

- По-моему, - сказал Илюша, - это будет история путешествия синьориты Одной Энной по натуральному ряду.

- Недурно сказано! - воскликнул Радикс. - Недурно!

- По-видимому, эта особа будет все уменьшаться в объеме.

- А не найдешь ли ты такого числа, на которое она все более и более будет походить?

- Не знаю, - произнес мальчик осторожно, - какое же это может быть число. Ну, разве что нуль? То есть я хочу сказать, что чем дальше будет продолжаться прогулка синьориты Одной Энной по натуральному ряду, тем труднее ее будет отличить от нуля.

- Это разумный вывод, - отвечал одобрительно Радикс. - Так, конечно, и будет. Ну, а что случится, по-твоему, если я возьму все значения твоей приятельницы, госпожи Одной Энной, и начну теперь делить единицу на каждое из ее значений? Ну-ка!

- Ясно, - отвечал Илюша, - что ты снова получишь все те целые числа, с которых я начал, когда мы заговорили и синьорите Одной Энной.

- 178 -

- Прелестно! Рад от души!.. Но скажи на милость, а нет ли такой величины или даже такого математического образа, на который все более и более будут походить эти все растущие и растущие обратные величины значений синьориты Одной Энной?

Илюша не знал, что ответить на это, и только высказал предположение, что числа эти будут невообразимо громадны, так что вскоре даже и слава пресловутого "последнего" архимедова числа сильно потускнеет.

- Послушай, Илюша, - промолвил" Радикс, - ты только что сказал: что ни далее, тем значения синьориты Одной Энной все менее и менее будут отличаться от...

- От нуля.

- Правильно. Следовательно, перед нами будет ряд частных, делители которых все приближаются и приближаются к нулю. Прекрасно! А к чему же будут приближаться частные?

Илюша призадумался. Затем он сказал так:

- Видишь ли, я слышал, что есть такое слово "бесконечность". Только я не знаю: правильно ли будет, если мы сейчас о нем вспомним? Как ты скажешь?

- Это дело серьезное. И даже весьма. Тут есть над чем голову поломать. А в общем, чтобы подвести итог нашему разговору о "Псаммите", попробуй скажи мне в одной фразе, что там говорится.

Илюша подумал и ответил так:

- Какую бы мой собеседник величину ни назначил, я немедленно сооружу число во много раз больше.

И Радикс улыбнулся, на этот раз вполне удовлетворенный ответом Илюши.

- 179 -

Схолия Одиннадцатая,

которая, во-первых, довольно длинная, а во-вторых, не так уж проста, так что читателю придется проявить если не упрямство, то немалое упорство, коли он хочет и дальше играть в схолии. Однако если не читать этой схолии, то и вообще больше ничего читать в этой книжке не придется. Поэтому тот, кто хочет читать далее Одиннадцатой Схолии, должен запастись мужеством. Тогда он узнает кое-что новое о яблоках, о кружочках и прутиках одного не очень послушного и даже упрямого мальчика, который жил неподалеку от одной большой горы. Именно тут Илюша слышит превосходные арифметические рассуждения, но как только дело чуть-чуть касается геометрии, поднимается невероятная кутерьма, вызванная появлением некоего неуклюжего авиадесанта, одолеть который только и можно с помощью вышеупомянутого упрямства.

- Ну-с, уважаемый Илья Алексеич, - произнес важно Радикс, - изложите мне вкратце, как вы себя изволите чувствовать.

Илюша посмотрел на него немного подозрительно, припомнив не совсем приятный разговор с командором, но потом решил, что вряд ли Радикс вспоминает именно об этой истории.

- 180 -

- Во-первых, - начал Илюша, - мне никогда в голову не приходило, что у нас здесь столько чудес. Во-вторых, я никогда не думал, чтобы такой пустяк, как, например, Дразнилка, мог привести к таким серьезным и сложным выводам.

Перейти на страницу:

Сергей Бобров читать все книги автора по порядку

Сергей Бобров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-online.club.


ВОЛШЕБНЫЙ ДВУРОГ отзывы

Отзывы читателей о книге ВОЛШЕБНЫЙ ДВУРОГ, автор: Сергей Бобров. Читайте комментарии и мнения людей о произведении.


Уважаемые читатели и просто посетители нашей библиотеки! Просим Вас придерживаться определенных правил при комментировании литературных произведений.

  • 1. Просьба отказаться от дискриминационных высказываний. Мы защищаем право наших читателей свободно выражать свою точку зрения. Вместе с тем мы не терпим агрессии. На сайте запрещено оставлять комментарий, который содержит унизительные высказывания или призывы к насилию по отношению к отдельным лицам или группам людей на основании их расы, этнического происхождения, вероисповедания, недееспособности, пола, возраста, статуса ветерана, касты или сексуальной ориентации.
  • 2. Просьба отказаться от оскорблений, угроз и запугиваний.
  • 3. Просьба отказаться от нецензурной лексики.
  • 4. Просьба вести себя максимально корректно как по отношению к авторам, так и по отношению к другим читателям и их комментариям.

Надеемся на Ваше понимание и благоразумие. С уважением, администратор kniga-online.


Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*